{"title":"Observation routes and external watchman routes","authors":"Adrian Dumitrescu , Csaba D. Tóth","doi":"10.1016/j.tcs.2024.114818","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the Observation Route Problem (<span>ORP</span>) defined as follows: Given a set of <em>n</em> pairwise disjoint obstacles (regions) in the plane, find a shortest tour (route) such that an observer walking along this tour can see (observe) each obstacle from some point of the tour. The observer does <em>not</em> need to see the entire boundary of an obstacle. The tour is <em>not</em> allowed to intersect the interior of any region (i.e., the regions are obstacles and therefore out of bounds). The problem exhibits similarity to both the Traveling Salesman Problem with Neighborhoods (<span>TSPN</span>) and the External Watchman Route Problem (<span>EWRP</span>). We distinguish two variants: the range of visibility is either limited to a bounding rectangle, or unlimited. We obtain the following results:</p><p>(I) Given a family of <em>n</em> disjoint convex bodies in the plane, computing a shortest observation route does not admit a <span><math><mo>(</mo><mi>c</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-approximation unless <span><math><mi>P</mi><mo>=</mo><mrow><mi>NP</mi></mrow></math></span> for an absolute constant <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span>. (This holds for both limited and unlimited vision.)</p><p>(II) Given a family of disjoint convex bodies in the plane, computing a shortest external watchman route is <span><math><mi>NP</mi></math></span>-hard. (This holds for both limited and unlimited vision; and even for families of axis-aligned squares.)</p><p>(III) Given a family of <em>n</em> disjoint fat convex polygons in the plane, an observation tour whose length is at most <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> times the optimal can be computed in polynomial time. (This holds for limited vision.)</p><p>(IV) For every <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>, there exists a convex polygon with <em>n</em> sides and all angles obtuse such that its perimeter is <em>not</em> a shortest external watchman route. This refutes a conjecture by Absar and Whitesides (2006).</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1019 ","pages":"Article 114818"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304397524004353/pdfft?md5=8156a2411321e5e2d23ab419a17b5976&pid=1-s2.0-S0304397524004353-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004353","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the Observation Route Problem (ORP) defined as follows: Given a set of n pairwise disjoint obstacles (regions) in the plane, find a shortest tour (route) such that an observer walking along this tour can see (observe) each obstacle from some point of the tour. The observer does not need to see the entire boundary of an obstacle. The tour is not allowed to intersect the interior of any region (i.e., the regions are obstacles and therefore out of bounds). The problem exhibits similarity to both the Traveling Salesman Problem with Neighborhoods (TSPN) and the External Watchman Route Problem (EWRP). We distinguish two variants: the range of visibility is either limited to a bounding rectangle, or unlimited. We obtain the following results:
(I) Given a family of n disjoint convex bodies in the plane, computing a shortest observation route does not admit a -approximation unless for an absolute constant . (This holds for both limited and unlimited vision.)
(II) Given a family of disjoint convex bodies in the plane, computing a shortest external watchman route is -hard. (This holds for both limited and unlimited vision; and even for families of axis-aligned squares.)
(III) Given a family of n disjoint fat convex polygons in the plane, an observation tour whose length is at most times the optimal can be computed in polynomial time. (This holds for limited vision.)
(IV) For every , there exists a convex polygon with n sides and all angles obtuse such that its perimeter is not a shortest external watchman route. This refutes a conjecture by Absar and Whitesides (2006).
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.