Andrea Loddo , Cecilia Di Ruberto , Giuliano Armano , Andrea Manconi
{"title":"Detecting coagulation time in cheese making by means of computer vision and machine learning techniques","authors":"Andrea Loddo , Cecilia Di Ruberto , Giuliano Armano , Andrea Manconi","doi":"10.1016/j.compind.2024.104173","DOIUrl":null,"url":null,"abstract":"<div><p>Cheese production, a globally cherished culinary tradition, faces challenges in ensuring consistent product quality and production efficiency. The critical phase of determining cutting time during curd formation significantly influences cheese quality and yield. Traditional methods often struggle to address variability in coagulation conditions, particularly in small-scale factories. In this paper, we present several key practical contributions to the field, including the introduction of CM-IDB, the first publicly available image dataset related to the cheese-making process. Also, we propose an innovative artificial intelligence-based approach to automate the detection of curd-firming time during cheese production using a combination of computer vision and machine learning techniques. The proposed method offers real-time insights into curd firmness, aiding in predicting optimal cutting times. Experimental results show the effectiveness of integrating sequence information with single image features, leading to improved classification performance. In particular, deep learning-based features demonstrate excellent classification capability when integrated with sequence information. The study suggests the suitability of the proposed approach for integration into real-time systems, especially within dairy production, to enhance product quality and production efficiency.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"164 ","pages":"Article 104173"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166361524001015/pdfft?md5=049ee78fc600c8a36c293c17fd46e748&pid=1-s2.0-S0166361524001015-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524001015","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Cheese production, a globally cherished culinary tradition, faces challenges in ensuring consistent product quality and production efficiency. The critical phase of determining cutting time during curd formation significantly influences cheese quality and yield. Traditional methods often struggle to address variability in coagulation conditions, particularly in small-scale factories. In this paper, we present several key practical contributions to the field, including the introduction of CM-IDB, the first publicly available image dataset related to the cheese-making process. Also, we propose an innovative artificial intelligence-based approach to automate the detection of curd-firming time during cheese production using a combination of computer vision and machine learning techniques. The proposed method offers real-time insights into curd firmness, aiding in predicting optimal cutting times. Experimental results show the effectiveness of integrating sequence information with single image features, leading to improved classification performance. In particular, deep learning-based features demonstrate excellent classification capability when integrated with sequence information. The study suggests the suitability of the proposed approach for integration into real-time systems, especially within dairy production, to enhance product quality and production efficiency.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.