A Lightweight Multidendritic Pyramidal Neuron Model With Neural Plasticity on Image Recognition

Yu Zhang;Pengxing Cai;Yanan Sun;Zhiming Zhang;Zhenyu Lei;Shangce Gao
{"title":"A Lightweight Multidendritic Pyramidal Neuron Model With Neural Plasticity on Image Recognition","authors":"Yu Zhang;Pengxing Cai;Yanan Sun;Zhiming Zhang;Zhenyu Lei;Shangce Gao","doi":"10.1109/TAI.2024.3379968","DOIUrl":null,"url":null,"abstract":"Simulating the method of neurons in the human brain that process signals is crucial for constructing a neural network with biological interpretability. However, existing deep neural networks simplify the function of a single neuron without considering dendritic plasticity. In this article, we present a multidendrite pyramidal neuron model (MDPN) for image classification, which mimics the multilevel dendritic structure of a nerve cell. Unlike the traditional feedforward network model, MDPN discards premature linear summation integration and employs a nonlinear dendritic computation such that improving the neuroplasticity. To model a lightweight and effective classification system, we emphasized the importance of single neuron and redefined the function of each subcomponent. Experimental results verify the effectiveness and robustness of our proposed MDPN in classifying 16 standardized image datasets with different characteristics. Compared to other state-of-the-art and well-known networks, MDPN is superior in terms of classifica-tion accuracy.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10477771/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simulating the method of neurons in the human brain that process signals is crucial for constructing a neural network with biological interpretability. However, existing deep neural networks simplify the function of a single neuron without considering dendritic plasticity. In this article, we present a multidendrite pyramidal neuron model (MDPN) for image classification, which mimics the multilevel dendritic structure of a nerve cell. Unlike the traditional feedforward network model, MDPN discards premature linear summation integration and employs a nonlinear dendritic computation such that improving the neuroplasticity. To model a lightweight and effective classification system, we emphasized the importance of single neuron and redefined the function of each subcomponent. Experimental results verify the effectiveness and robustness of our proposed MDPN in classifying 16 standardized image datasets with different characteristics. Compared to other state-of-the-art and well-known networks, MDPN is superior in terms of classifica-tion accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有图像识别神经可塑性的轻量级多树突锥体神经元模型
模拟人脑中神经元处理信号的方法对于构建具有生物可解释性的神经网络至关重要。然而,现有的深度神经网络简化了单个神经元的功能,没有考虑树突的可塑性。在本文中,我们提出了一种用于图像分类的多树突锥体神经元模型(MDPN),该模型模拟了神经细胞的多级树突结构。与传统的前馈网络模型不同,MDPN 摒弃了过早的线性求和整合,采用了非线性树突计算,从而提高了神经可塑性。为了建立一个轻便有效的分类系统模型,我们强调了单个神经元的重要性,并重新定义了每个子组件的功能。实验结果验证了我们提出的 MDPN 在对 16 个具有不同特征的标准化图像数据集进行分类时的有效性和鲁棒性。与其他最先进的知名网络相比,MDPN 在分类准确性方面更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1