IOTM: Iterative Optimization Trigger Method—A Runtime Data-Free Backdoor Attacks on Deep Neural Networks

Iram Arshad;Saeed Hamood Alsamhi;Yuansong Qiao;Brian Lee;Yuhang Ye
{"title":"IOTM: Iterative Optimization Trigger Method—A Runtime Data-Free Backdoor Attacks on Deep Neural Networks","authors":"Iram Arshad;Saeed Hamood Alsamhi;Yuansong Qiao;Brian Lee;Yuhang Ye","doi":"10.1109/TAI.2024.3384938","DOIUrl":null,"url":null,"abstract":"Deep neural networks are susceptible to various backdoor attacks, such as training time attacks, where the attacker can inject a trigger pattern into a small portion of the dataset to control the model's predictions at runtime. Backdoor attacks are dangerous because they do not degrade the model's performance. This article explores the feasibility of a new type of backdoor attack, a \n<italic>data-free</i>\n backdoor. Unlike traditional backdoor attacks that require poisoning data and injection during training, our approach, the iterative optimization trigger method (IOTM), enables trigger generation without compromising the integrity of the models and datasets. We propose an attack based on an IOTM technique, guided by an adaptive trigger generator (ATG) and employing a custom objective function. ATG dynamically refines the trigger using feedback from the model's predictions. We empirically evaluated the effectiveness of IOTM with three deep learning models (CNN, VGG16, and ResNet18) using the CIFAR10 dataset. The achieved runtime-attack success rate (R-ASR) varies across different classes. For some classes, the R-ASR reached 100%; whereas, for others, it reached 62%. Furthermore, we conducted an ablation study to investigate critical factors in the runtime backdoor, including optimizer, weight, “REG,” and trigger visibility on R-ASR using the CIFAR100 dataset. We observed significant variations in the R-ASR by changing the optimizer, including Adam and SGD, with and without momentum. The R-ASR reached 81.25% with the Adam optimizer, whereas the SGD with momentum and without results reached 46.87% and 3.12%, respectively.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10492613/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks are susceptible to various backdoor attacks, such as training time attacks, where the attacker can inject a trigger pattern into a small portion of the dataset to control the model's predictions at runtime. Backdoor attacks are dangerous because they do not degrade the model's performance. This article explores the feasibility of a new type of backdoor attack, a data-free backdoor. Unlike traditional backdoor attacks that require poisoning data and injection during training, our approach, the iterative optimization trigger method (IOTM), enables trigger generation without compromising the integrity of the models and datasets. We propose an attack based on an IOTM technique, guided by an adaptive trigger generator (ATG) and employing a custom objective function. ATG dynamically refines the trigger using feedback from the model's predictions. We empirically evaluated the effectiveness of IOTM with three deep learning models (CNN, VGG16, and ResNet18) using the CIFAR10 dataset. The achieved runtime-attack success rate (R-ASR) varies across different classes. For some classes, the R-ASR reached 100%; whereas, for others, it reached 62%. Furthermore, we conducted an ablation study to investigate critical factors in the runtime backdoor, including optimizer, weight, “REG,” and trigger visibility on R-ASR using the CIFAR100 dataset. We observed significant variations in the R-ASR by changing the optimizer, including Adam and SGD, with and without momentum. The R-ASR reached 81.25% with the Adam optimizer, whereas the SGD with momentum and without results reached 46.87% and 3.12%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IOTM:迭代优化触发法--深度神经网络的无运行时数据后门攻击
深度神经网络容易受到各种后门攻击,例如训练时间攻击,攻击者可以在一小部分数据集中注入触发模式,从而在运行时控制模型的预测。后门攻击非常危险,因为它们不会降低模型的性能。本文探讨了一种新型后门攻击--无数据后门--的可行性。传统的后门攻击需要在训练过程中毒化数据和注入数据,而我们的方法--迭代优化触发法(IOTM)--可以在不损害模型和数据集完整性的情况下生成触发器。我们提出了一种基于 IOTM 技术的攻击方法,它由自适应触发器(ATG)引导,并采用自定义目标函数。ATG 利用来自模型预测的反馈动态完善触发器。我们利用 CIFAR10 数据集,通过三种深度学习模型(CNN、VGG16 和 ResNet18)对 IOTM 的有效性进行了实证评估。不同类别的运行时间攻击成功率(R-ASR)各不相同。对于某些类别,R-ASR 达到 100%;而对于其他类别,R-ASR 则为 62%。此外,我们还利用 CIFAR100 数据集开展了一项消融研究,以调查运行时后门的关键因素,包括优化器、权重、"REG "和触发器可见性对 R-ASR 的影响。通过改变优化器(包括 Adam 和 SGD),我们观察到 R-ASR 在有动量和无动量的情况下有明显变化。使用 Adam 优化器时,R-ASR 达到 81.25%,而使用 SGD 时,有动量和无动量的 R-ASR 分别为 46.87% 和 3.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1