A Distributed Conditional Wasserstein Deep Convolutional Relativistic Loss Generative Adversarial Network With Improved Convergence

Arunava Roy;Dipankar Dasgupta
{"title":"A Distributed Conditional Wasserstein Deep Convolutional Relativistic Loss Generative Adversarial Network With Improved Convergence","authors":"Arunava Roy;Dipankar Dasgupta","doi":"10.1109/TAI.2024.3386500","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks (GANs) excel in diverse applications such as image enhancement, manipulation, and generating images and videos from text. Yet, training GANs with large datasets remains computationally intensive for standalone systems. Synchronization issues between the generator and discriminator lead to unstable training, poor convergence, vanishing, and exploding gradient challenges. In decentralized environments, standalone GANs struggle with distributed data on client machines. Researchers have turned to federated learning (FL) for distributed-GAN (D-GAN) implementations, but efforts often fall short due to training instability and poor synchronization within GAN components. In this study, we present DRL-GAN, a lightweight Wasserstein conditional distributed relativistic loss-GAN designed to overcome existing limitations. DRL-GAN ensures training stability in the face of nonconvex losses by employing a single global generator on the central server and a discriminator per client. Utilizing Wasserstein-1 for relativistic loss computation between real and fake samples, DRL-GAN effectively addresses issues, such as mode collapses, vanishing, and exploding gradients, accommodating both iid and non-iid private data in clients and fostering strong convergence. The absence of a robust conditional distributed-GAN model serves as another motivation for this work. We provide a comprehensive mathematical formulation of DRL-GAN and validate our claims empirically on CIFAR-10, MNIST, EuroSAT, and LSUN-Bedroom datasets.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10495156/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative adversarial networks (GANs) excel in diverse applications such as image enhancement, manipulation, and generating images and videos from text. Yet, training GANs with large datasets remains computationally intensive for standalone systems. Synchronization issues between the generator and discriminator lead to unstable training, poor convergence, vanishing, and exploding gradient challenges. In decentralized environments, standalone GANs struggle with distributed data on client machines. Researchers have turned to federated learning (FL) for distributed-GAN (D-GAN) implementations, but efforts often fall short due to training instability and poor synchronization within GAN components. In this study, we present DRL-GAN, a lightweight Wasserstein conditional distributed relativistic loss-GAN designed to overcome existing limitations. DRL-GAN ensures training stability in the face of nonconvex losses by employing a single global generator on the central server and a discriminator per client. Utilizing Wasserstein-1 for relativistic loss computation between real and fake samples, DRL-GAN effectively addresses issues, such as mode collapses, vanishing, and exploding gradients, accommodating both iid and non-iid private data in clients and fostering strong convergence. The absence of a robust conditional distributed-GAN model serves as another motivation for this work. We provide a comprehensive mathematical formulation of DRL-GAN and validate our claims empirically on CIFAR-10, MNIST, EuroSAT, and LSUN-Bedroom datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进收敛性的分布式条件瓦瑟斯坦深度卷积相对损失生成对抗网络
生成式对抗网络(GAN)在图像增强、处理以及根据文本生成图像和视频等多种应用中表现出色。然而,对于独立系统而言,使用大型数据集训练生成式对抗网络仍然是一项计算密集型工作。生成器和判别器之间的同步问题会导致训练不稳定、收敛性差、消失和梯度爆炸等难题。在分散的环境中,独立的 GANs 难以处理客户端机器上的分布式数据。研究人员已将联合学习(FL)用于分布式 GAN(D-GAN)的实现,但由于 GAN 组件内的训练不稳定和同步性差,这些努力往往无法奏效。在本研究中,我们介绍了 DRL-GAN,它是一种轻量级的 Wasserstein 条件分布式相对论损失-GAN,旨在克服现有的局限性。DRL-GAN 通过在中央服务器上采用单个全局发生器和每个客户端采用一个判别器,确保了面对非凸损失时的训练稳定性。DRL-GAN 利用 Wasserstein-1 在真实样本和虚假样本之间进行相对损失计算,有效解决了模式坍塌、消失和梯度爆炸等问题,同时兼顾了客户机中的 iid 和非 iid 私有数据,并促进了强大的收敛性。缺乏稳健的条件分布式广义网络模型是这项工作的另一个动机。我们提供了 DRL-GAN 的全面数学表述,并在 CIFAR-10、MNIST、EuroSAT 和 LSUN-Bedroom 数据集上验证了我们的主张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1