Stabilizing Diffusion Model for Robotic Control With Dynamic Programming and Transition Feasibility

Haoran Li;Yaocheng Zhang;Haowei Wen;Yuanheng Zhu;Dongbin Zhao
{"title":"Stabilizing Diffusion Model for Robotic Control With Dynamic Programming and Transition Feasibility","authors":"Haoran Li;Yaocheng Zhang;Haowei Wen;Yuanheng Zhu;Dongbin Zhao","doi":"10.1109/TAI.2024.3387401","DOIUrl":null,"url":null,"abstract":"Due to its strong ability in distribution representation, the diffusion model has been incorporated into offline reinforcement learning (RL) to cover diverse trajectories of the complex behavior policy. However, this also causes several challenges. Training the diffusion model to imitate behavior from the collected trajectories suffers from limited stitching capability which derives better policies from suboptimal trajectories. Furthermore, the inherent randomness of the diffusion model can lead to unpredictable control and dangerous behavior for the robot. To address these concerns, we propose the value-learning-based decision diffuser (V-DD), which consists of the trajectory diffusion module (TDM) and the trajectory evaluation module (TEM). During the training process, the TDM combines the state-value and classifier-free guidance to bolster the ability to stitch suboptimal trajectories. During the inference process, we design the TEM to select a feasible trajectory generated by the diffusion model. Empirical results demonstrate that our method delivers competitive results on the D4RL benchmark and substantially outperforms current diffusion model-based methods on the real-world robot task.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 9","pages":"4585-4594"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10496464/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its strong ability in distribution representation, the diffusion model has been incorporated into offline reinforcement learning (RL) to cover diverse trajectories of the complex behavior policy. However, this also causes several challenges. Training the diffusion model to imitate behavior from the collected trajectories suffers from limited stitching capability which derives better policies from suboptimal trajectories. Furthermore, the inherent randomness of the diffusion model can lead to unpredictable control and dangerous behavior for the robot. To address these concerns, we propose the value-learning-based decision diffuser (V-DD), which consists of the trajectory diffusion module (TDM) and the trajectory evaluation module (TEM). During the training process, the TDM combines the state-value and classifier-free guidance to bolster the ability to stitch suboptimal trajectories. During the inference process, we design the TEM to select a feasible trajectory generated by the diffusion model. Empirical results demonstrate that our method delivers competitive results on the D4RL benchmark and substantially outperforms current diffusion model-based methods on the real-world robot task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用动态编程和过渡可行性的机器人控制稳定扩散模型
由于扩散模型在分布表示方面的强大能力,它已被纳入离线强化学习(RL),以覆盖复杂行为政策的各种轨迹。然而,这也带来了一些挑战。从收集到的轨迹中训练扩散模型来模仿行为,会受到拼接能力的限制,从而从次优轨迹中得出更好的策略。此外,扩散模型固有的随机性可能会导致机器人无法预测的控制和危险行为。为了解决这些问题,我们提出了基于价值学习的决策扩散器(V-DD),它由轨迹扩散模块(TDM)和轨迹评估模块(TEM)组成。在训练过程中,TDM 结合了状态值和无分类器指导,以提高缝合次优轨迹的能力。在推理过程中,我们设计 TEM 来选择由扩散模型生成的可行轨迹。实证结果表明,我们的方法在 D4RL 基准测试中取得了具有竞争力的结果,并且在实际机器人任务中大大优于当前基于扩散模型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1