Prediction of wear properties of CaO and MgO doped stabilized zirconia ceramics produced with different pressing methods using adaptive neuro fuzzy inference systems Vorhersage der Verschleißeigenschaften von CaO- und MgO-dotierten stabilisierten Zirkonoxidkeramiken, die mit verschiedenen Pressmethoden unter Verwendung adaptiver Neuro-Fuzzy-Inferenzsysteme hergestellt wurden

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialwissenschaft und Werkstofftechnik Pub Date : 2024-08-14 DOI:10.1002/mawe.202300329
A. G. Yüksek, T. Boyraz, A. Akkuş
{"title":"Prediction of wear properties of CaO and MgO doped stabilized zirconia ceramics produced with different pressing methods using adaptive neuro fuzzy inference systems\n Vorhersage der Verschleißeigenschaften von CaO- und MgO-dotierten stabilisierten Zirkonoxidkeramiken, die mit verschiedenen Pressmethoden unter Verwendung adaptiver Neuro-Fuzzy-Inferenzsysteme hergestellt wurden","authors":"A. G. Yüksek,&nbsp;T. Boyraz,&nbsp;A. Akkuş","doi":"10.1002/mawe.202300329","DOIUrl":null,"url":null,"abstract":"<p>The present paper describes the fabrication and wear behaviour of CaO and MgO added stabilized zirconia (ZrO<sub>2</sub>) ceramics produced by powder metallurgy method were examined and modelling with artificial neural networks was studied using the experimental data obtained. CaO/MgO added stabilized zirconia ceramics were fabricated by using a combined method of ball milling, cold pressing - cold isostatic pressing and sintering. CaO and MgO in different amounts (0–8 %mole) were mixed with zirconia. These mixtures were prepared by mechanical alloying method. The green compacts were sintered at 1600 °C. The wear experimental results obtained were converted into data suitable for modelling with artificial neural networks. Wear Load, wear time, CaO and MgO data were used as artificial neural networks input variables. The amount of wear according to the pressing method was taken as the output variables of artificial neural networks. An artificial neural networks was established for the prediction of wear properties of zirconia pressed using the adaptive neuro fuzzy inference systems (ANFIS) learning technique. As a result, a high R<sup>2</sup> value of 0.9187 for cold pressing samples and 0,9449 for cold isostatic pressing samples was achieved based on the approach of comparing the success of the model with the test data set and the result produced.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 9","pages":"1227-1237"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300329","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper describes the fabrication and wear behaviour of CaO and MgO added stabilized zirconia (ZrO2) ceramics produced by powder metallurgy method were examined and modelling with artificial neural networks was studied using the experimental data obtained. CaO/MgO added stabilized zirconia ceramics were fabricated by using a combined method of ball milling, cold pressing - cold isostatic pressing and sintering. CaO and MgO in different amounts (0–8 %mole) were mixed with zirconia. These mixtures were prepared by mechanical alloying method. The green compacts were sintered at 1600 °C. The wear experimental results obtained were converted into data suitable for modelling with artificial neural networks. Wear Load, wear time, CaO and MgO data were used as artificial neural networks input variables. The amount of wear according to the pressing method was taken as the output variables of artificial neural networks. An artificial neural networks was established for the prediction of wear properties of zirconia pressed using the adaptive neuro fuzzy inference systems (ANFIS) learning technique. As a result, a high R2 value of 0.9187 for cold pressing samples and 0,9449 for cold isostatic pressing samples was achieved based on the approach of comparing the success of the model with the test data set and the result produced.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自适应神经模糊推理系统预测采用不同压制方法生产的氧化钙和掺氧化镁稳定氧化锆陶瓷的磨损特性 利用自适应神经模糊推理系统预测采用不同压制方法生产的氧化钙和掺氧化镁稳定氧化锆陶瓷的磨损特性
本文介绍了通过粉末冶金法生产的添加氧化钙和氧化镁的稳定氧化锆(ZrO2)陶瓷的制造和磨损行为,并利用获得的实验数据研究了人工神经网络建模。采用球磨、冷压-冷等静压和烧结相结合的方法制造了添加 CaO/MgO 的稳定氧化锆陶瓷。氧化钙和氧化镁与氧化锆的混合量各不相同(0-8%mole)。这些混合物是通过机械合金法制备的。生坯在 1600 °C 下烧结。获得的磨损实验结果被转换成适合用人工神经网络建模的数据。磨损载荷、磨损时间、氧化钙和氧化镁数据被用作人工神经网络的输入变量。根据压制方法得出的磨损量作为人工神经网络的输出变量。利用自适应神经模糊推理系统(ANFIS)学习技术,建立了预测氧化锆压制磨损性能的人工神经网络。结果,根据模型与测试数据集和结果的成功比较方法,冷压样品的 R2 值高达 0.9187,冷等静压样品的 R2 值高达 0.9449。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
期刊最新文献
Deep drawing of coated aluminium sheets: Experimental and numerical study Tiefziehen von beschichteten Aluminiumblechen: Experimentelle und numerische Untersuchungen Materialwiss. Werkstofftech. 11/2024 Impressum: Materialwiss. Werkstofftech. 11/2024 Cover Picture: (Materialwiss. Werkstofftech. 11/2024) Investigating the influence of ferric oxide grade alumino-silicate cenosphere particulates and heat treatment on the microstructural evolution and mechanical properties of Al6061/ferric oxide alumino-silicate cenosphere (x weight %) composite Untersuchung des Einflusses von Eisenoxid-Aluminium-Silikat-Cenosphärenpartikeln und Wärmebehandlung auf die mikrostrukturelle Entwicklung und die mechanischen Eigenschaften von Al6061/Eisenoxid-Aluminium-Silikat-Cenosphäre (x Gew.–%)-Verbundwerkstoff
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1