{"title":"Effects of Mesozooplankton Growth and Reproduction on Plankton and Organic Carbon Dynamics in a Marine Biogeochemical Model","authors":"Corentin Clerc, Laurent Bopp, Fabio Benedetti, Nielja Knecht, Meike Vogt, Olivier Aumont","doi":"10.1029/2024GB008153","DOIUrl":null,"url":null,"abstract":"<p>Marine mesozooplankton play an important role for marine ecosystem functioning and global biogeochemical cycles. Their size structure, varying spatially and temporally, heavily impacts biogeochemical processes and ecosystem services. Mesozooplankton exhibit size changes throughout their life cycle, affecting metabolic rates and functional traits. Despite this variability, many models oversimplify mesozooplankton as a single, unchanging size class, potentially biasing carbon flux estimates. Here, we include mesozooplankton ontogenetic growth and reproduction into a 3-dimensional global ocean biogeochemical model, PISCES-MOG, and investigate the subsequent effects on simulated mesozooplankton phenology, plankton distribution, and organic carbon export. Utilizing an ensemble of statistical predictive models calibrated with a global set of observations, we generated monthly climatologies of mesozooplankton biomass to evaluate the simulations of PISCES-MOG. Our analyses reveal that the model and observation-based biomass distributions are consistent (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>pearson</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{r}}_{\\mathit{pearson}}$</annotation>\n </semantics></math> = 0.40, total epipelagic biomass: 137 TgC from observations vs. 232 TgC in the model), with similar seasonality (later bloom as latitude increases poleward). Including ontogenetic growth in the model induced cohort dynamics and variable seasonal dynamics across mesozooplankton size classes and altered the relative contribution of carbon cycling pathways. Younger and smaller mesozooplankton transitioned to microzooplankton in PISCES-MOG, resulting in a change in particle size distribution, characterized by a decrease in large particulate organic carbon (POC) and an increase in small POC generation. Consequently, carbon export from the surface was reduced by 10%. This study underscores the importance of accounting for ontogenetic growth and reproduction in models, highlighting the interconnectedness between mesozooplankton size, phenology, and their effects on marine carbon cycling.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008153","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008153","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Marine mesozooplankton play an important role for marine ecosystem functioning and global biogeochemical cycles. Their size structure, varying spatially and temporally, heavily impacts biogeochemical processes and ecosystem services. Mesozooplankton exhibit size changes throughout their life cycle, affecting metabolic rates and functional traits. Despite this variability, many models oversimplify mesozooplankton as a single, unchanging size class, potentially biasing carbon flux estimates. Here, we include mesozooplankton ontogenetic growth and reproduction into a 3-dimensional global ocean biogeochemical model, PISCES-MOG, and investigate the subsequent effects on simulated mesozooplankton phenology, plankton distribution, and organic carbon export. Utilizing an ensemble of statistical predictive models calibrated with a global set of observations, we generated monthly climatologies of mesozooplankton biomass to evaluate the simulations of PISCES-MOG. Our analyses reveal that the model and observation-based biomass distributions are consistent ( = 0.40, total epipelagic biomass: 137 TgC from observations vs. 232 TgC in the model), with similar seasonality (later bloom as latitude increases poleward). Including ontogenetic growth in the model induced cohort dynamics and variable seasonal dynamics across mesozooplankton size classes and altered the relative contribution of carbon cycling pathways. Younger and smaller mesozooplankton transitioned to microzooplankton in PISCES-MOG, resulting in a change in particle size distribution, characterized by a decrease in large particulate organic carbon (POC) and an increase in small POC generation. Consequently, carbon export from the surface was reduced by 10%. This study underscores the importance of accounting for ontogenetic growth and reproduction in models, highlighting the interconnectedness between mesozooplankton size, phenology, and their effects on marine carbon cycling.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.