{"title":"Illuminating the future of precision cancer surgery with fluorescence imaging and artificial intelligence convergence","authors":"Han Cheng, Hongtao Xu, Boyang Peng, Xiaojuan Huang, Yongjie Hu, Chongyang Zheng, Zhiyuan Zhang","doi":"10.1038/s41698-024-00699-3","DOIUrl":null,"url":null,"abstract":"Real-time and accurate guidance for tumor resection has long been anticipated by surgeons. In the past decade, the flourishing material science has made impressive progress in near-infrared fluorophores that may fulfill this purpose. Fluorescence imaging-guided surgery shows great promise for clinical application and has undergone widespread evaluations, though it still requires continuous improvements to transition this technique from bench to bedside. Concurrently, the rapid progress of artificial intelligence (AI) has revolutionized medicine, aiding in the screening, diagnosis, and treatment of human doctors. Incorporating AI helps enhance fluorescence imaging and is poised to bring major innovations to surgical guidance, thereby realizing precision cancer surgery. This review provides an overview of the principles and clinical evaluations of fluorescence-guided surgery. Furthermore, recent endeavors to synergize AI with fluorescence imaging were presented, and the benefits of this interdisciplinary convergence were discussed. Finally, several implementation strategies to overcome technical hurdles were proposed to encourage and inspire future research to expedite the clinical application of these revolutionary technologies.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00699-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00699-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time and accurate guidance for tumor resection has long been anticipated by surgeons. In the past decade, the flourishing material science has made impressive progress in near-infrared fluorophores that may fulfill this purpose. Fluorescence imaging-guided surgery shows great promise for clinical application and has undergone widespread evaluations, though it still requires continuous improvements to transition this technique from bench to bedside. Concurrently, the rapid progress of artificial intelligence (AI) has revolutionized medicine, aiding in the screening, diagnosis, and treatment of human doctors. Incorporating AI helps enhance fluorescence imaging and is poised to bring major innovations to surgical guidance, thereby realizing precision cancer surgery. This review provides an overview of the principles and clinical evaluations of fluorescence-guided surgery. Furthermore, recent endeavors to synergize AI with fluorescence imaging were presented, and the benefits of this interdisciplinary convergence were discussed. Finally, several implementation strategies to overcome technical hurdles were proposed to encourage and inspire future research to expedite the clinical application of these revolutionary technologies.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.