{"title":"Visual hallucinations in Parkinson's disease: spotlight on central cholinergic dysfunction.","authors":"Anna Ignatavicius,Elie Matar,Simon J G Lewis","doi":"10.1093/brain/awae289","DOIUrl":null,"url":null,"abstract":"Visual hallucinations are a common non-motor feature of Parkinson's disease and have been associated with accelerated cognitive decline, increased mortality and early institutionalisation. Despite their prevalence and negative impact on patient outcomes, the repertoire of treatments aimed at addressing this troubling symptom is limited. Over the last two decades, significant contributions have been made in uncovering the pathological and functional mechanisms of visual hallucinations, bringing us closer to the development of a comprehensive neurobiological framework. Convergent evidence now suggests that degeneration within the central cholinergic system may play a significant role in the genesis and progression of visual hallucinations. Here, we outline how cholinergic dysfunction may serve as a potential unifying neurobiological substrate underlying the multifactorial and dynamic nature of visual hallucinations. Drawing upon previous theoretical models, we explore the impact that alterations in cholinergic neurotransmission has on the core cognitive processes pertinent to abnormal perceptual experiences. We conclude by highlighting that a deeper understanding of cholinergic neurobiology and individual pathophysiology may help to improve established and emerging treatment strategies for the management of visual hallucinations and psychotic symptoms in Parkinson's disease.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae289","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Visual hallucinations are a common non-motor feature of Parkinson's disease and have been associated with accelerated cognitive decline, increased mortality and early institutionalisation. Despite their prevalence and negative impact on patient outcomes, the repertoire of treatments aimed at addressing this troubling symptom is limited. Over the last two decades, significant contributions have been made in uncovering the pathological and functional mechanisms of visual hallucinations, bringing us closer to the development of a comprehensive neurobiological framework. Convergent evidence now suggests that degeneration within the central cholinergic system may play a significant role in the genesis and progression of visual hallucinations. Here, we outline how cholinergic dysfunction may serve as a potential unifying neurobiological substrate underlying the multifactorial and dynamic nature of visual hallucinations. Drawing upon previous theoretical models, we explore the impact that alterations in cholinergic neurotransmission has on the core cognitive processes pertinent to abnormal perceptual experiences. We conclude by highlighting that a deeper understanding of cholinergic neurobiology and individual pathophysiology may help to improve established and emerging treatment strategies for the management of visual hallucinations and psychotic symptoms in Parkinson's disease.
期刊介绍:
Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.