Universal and holistic privacy protection in quantum computing: a novel approach through quantum circuit equivalence homomorphic encryption

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-09-10 DOI:10.1088/2058-9565/ad749a
Xuejian Zhang, Yan Chang, Lin Zeng, Weifeng Xue, Lili Yan and Shibin Zhang
{"title":"Universal and holistic privacy protection in quantum computing: a novel approach through quantum circuit equivalence homomorphic encryption","authors":"Xuejian Zhang, Yan Chang, Lin Zeng, Weifeng Xue, Lili Yan and Shibin Zhang","doi":"10.1088/2058-9565/ad749a","DOIUrl":null,"url":null,"abstract":"Due to the stringent hardware requirements and high cost, quantum computing as a service (QCaaS) is currently the main way to output quantum computing capabilities. However, the current QCaaS has significant shortcomings in privacy protection. The existing researches mainly focus on dataset privacy in some specific quantum machine learning algorithms, and there is no general and comprehensive research on privacy protection for dataset, parameter sets and algorithm models. To solve this problem, this paper defines the concept of generalized quantum homomorphic encryption and pioneers a novel method termed quantum circuit equivalence homomorphic encryption (QCEHE), aiming at protecting the privacy of the complete quantum circuits—encompassing data, parameters, and model. Based on QCEHE, a privacy protection scheme and its approximate implementation called quantum circuit equivalent substitution algorithm are proposed for any quantum algorithm, which can encrypt the complete quantum circuit on a classical computer, ensuring that the encrypted quantum circuit is physically equivalent to the original one, and does not reveal data holders’ privacy (data, parameters and model). By theoretical derivation, we prove that the proposed solution can effectively execute any quantum algorithm while protecting privacy. By applying the proposed solution to the privacy protection of the Harrow–Hassidim–Lloyd algorithm and the variational quantum classifier algorithm, the results showed that the accuracy rate before and after encryption are almost the same, which means that the proposed solution can effectively protect the privacy of data holders without impacting the usability and accuracy.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad749a","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the stringent hardware requirements and high cost, quantum computing as a service (QCaaS) is currently the main way to output quantum computing capabilities. However, the current QCaaS has significant shortcomings in privacy protection. The existing researches mainly focus on dataset privacy in some specific quantum machine learning algorithms, and there is no general and comprehensive research on privacy protection for dataset, parameter sets and algorithm models. To solve this problem, this paper defines the concept of generalized quantum homomorphic encryption and pioneers a novel method termed quantum circuit equivalence homomorphic encryption (QCEHE), aiming at protecting the privacy of the complete quantum circuits—encompassing data, parameters, and model. Based on QCEHE, a privacy protection scheme and its approximate implementation called quantum circuit equivalent substitution algorithm are proposed for any quantum algorithm, which can encrypt the complete quantum circuit on a classical computer, ensuring that the encrypted quantum circuit is physically equivalent to the original one, and does not reveal data holders’ privacy (data, parameters and model). By theoretical derivation, we prove that the proposed solution can effectively execute any quantum algorithm while protecting privacy. By applying the proposed solution to the privacy protection of the Harrow–Hassidim–Lloyd algorithm and the variational quantum classifier algorithm, the results showed that the accuracy rate before and after encryption are almost the same, which means that the proposed solution can effectively protect the privacy of data holders without impacting the usability and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子计算中的通用和整体隐私保护:通过量子电路等价同态加密的新方法
由于严格的硬件要求和高昂的成本,量子计算即服务(QCaaS)是目前输出量子计算能力的主要方式。然而,目前的量子计算即服务(QCaaS)在隐私保护方面存在明显不足。现有的研究主要集中在一些特定量子机器学习算法中的数据集隐私保护,对于数据集、参数集和算法模型的隐私保护还没有普遍而全面的研究。为了解决这个问题,本文定义了广义量子同态加密的概念,并开创了一种称为量子电路等效同态加密(QCEHE)的新方法,旨在保护包括数据、参数和模型在内的完整量子电路的隐私。在 QCEHE 的基础上,我们提出了一种隐私保护方案及其近似实现方法--量子电路等效替换算法,适用于任何量子算法,它可以在经典计算机上加密完整的量子电路,确保加密后的量子电路与原始电路物理等效,并且不会泄露数据持有者的隐私(数据、参数和模型)。通过理论推导,我们证明了所提出的解决方案可以在保护隐私的同时有效执行任何量子算法。通过将提出的解决方案应用于哈罗-哈西迪姆-劳埃德算法和变分量子分类器算法的隐私保护,结果表明加密前后的准确率几乎相同,这意味着提出的解决方案可以在不影响可用性和准确性的情况下有效保护数据持有者的隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
From architectures to applications: a review of neural quantum states OPA tomography of non-Gaussian states of light A linear photonic swap test circuit for quantum kernel estimation Practical twin-field quantum key distribution parameter optimization based on quantum annealing algorithm On the feasibility of detecting quantum delocalization effects on relativistic time dilation in optical clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1