Multiscale Spatial–Spectral Invertible Compensation Network for Hyperspectral Remote Sensing Image Denoising

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2024-09-10 DOI:10.1109/TGRS.2024.3457010
Huiyang Li;Kai Ren;Weiwei Sun;Gang Yang;Xiangchao Meng
{"title":"Multiscale Spatial–Spectral Invertible Compensation Network for Hyperspectral Remote Sensing Image Denoising","authors":"Huiyang Li;Kai Ren;Weiwei Sun;Gang Yang;Xiangchao Meng","doi":"10.1109/TGRS.2024.3457010","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) has fine spectral resolution and abundant spatial information to detect subtle differences between targets. However, it is heavily contaminated with noise due to sensor design and atmospheric radiative transfer, resulting in spectral shifts and spatial discontinuities. Current denoising methods usually establish constraints directly on the ground truth and denoised image, lacking supervision of intermediate parameters of the network, resulting in insufficient model constraints and poor convergence. In addition, existing methods do not consider spatial-spectral compensation, so the denoising results have obvious spatial-spectral distortion. To this end, we propose a novel multiscale spatial-spectral invertible compensation network (MSIC-Net) for HSI denoising. The method constructs an invertible spatial-spectral compensation (ISSC) module, which supervises intermediate features through inverse constraints, realizes the circulation of multiscale information, and improves the stability of the model. At the same time, we also introduce style transfer for spatial-spectral compensation, which uses its superior fine feature control ability to precisely compensate for the lost spatial and spectral detail features. The method is extensively validated experimentally and categorically on simulated and real datasets. The experimental results show that MSIC-Net outperforms other state-of-the-art denoising methods in quantitative and qualitative evaluations.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10672529/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral image (HSI) has fine spectral resolution and abundant spatial information to detect subtle differences between targets. However, it is heavily contaminated with noise due to sensor design and atmospheric radiative transfer, resulting in spectral shifts and spatial discontinuities. Current denoising methods usually establish constraints directly on the ground truth and denoised image, lacking supervision of intermediate parameters of the network, resulting in insufficient model constraints and poor convergence. In addition, existing methods do not consider spatial-spectral compensation, so the denoising results have obvious spatial-spectral distortion. To this end, we propose a novel multiscale spatial-spectral invertible compensation network (MSIC-Net) for HSI denoising. The method constructs an invertible spatial-spectral compensation (ISSC) module, which supervises intermediate features through inverse constraints, realizes the circulation of multiscale information, and improves the stability of the model. At the same time, we also introduce style transfer for spatial-spectral compensation, which uses its superior fine feature control ability to precisely compensate for the lost spatial and spectral detail features. The method is extensively validated experimentally and categorically on simulated and real datasets. The experimental results show that MSIC-Net outperforms other state-of-the-art denoising methods in quantitative and qualitative evaluations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高光谱遥感图像去噪的多尺度空间光谱可逆补偿网络
高光谱图像(HSI)具有精细的光谱分辨率和丰富的空间信息,可探测目标之间的细微差别。然而,由于传感器设计和大气辐射传输的原因,它受到严重的噪声污染,导致光谱偏移和空间不连续性。目前的去噪方法通常直接对地面实况和去噪图像建立约束,缺乏对网络中间参数的监督,导致模型约束不足,收敛性差。此外,现有方法没有考虑空间光谱补偿,因此去噪结果存在明显的空间光谱失真。为此,我们提出了一种新型的多尺度空间-频谱可逆补偿网络(MSIC-Net),用于 HSI 去噪。该方法构建了一个可逆空间-频谱补偿(ISSC)模块,通过反约束对中间特征进行监督,实现了多尺度信息的流通,提高了模型的稳定性。同时,我们还引入了空间-光谱补偿的样式转移,利用其卓越的精细特征控制能力,精确补偿丢失的空间和光谱细节特征。该方法在模拟和真实数据集上进行了广泛的实验和分类验证。实验结果表明,MSIC-Net 在定量和定性评估方面都优于其他最先进的去噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Remote sensing images destriping via nonconvex regularization and fast regional decomposition An Enhanced Global Feature-Guided Network Based on Multiple Filtering Noise Reduction for Remote Sensing Image Compression SHBGAN: Hybrid Bilateral Attention GAN for Seismic Image Super-Resolution Reconstruction FDBANet: A Fusion Frequency Domain Denoising and Multi-Scale Boundary Attention Network for Sonar Image Semantic Segmentation Remote-Sensing Image Scene Classification via Graph Template Enhancement and Supplementation Network with Dual-Teacher Knowledge Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1