Multiple Object Tracking in Satellite Video With Graph-Based Multiclue Fusion Tracker

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2024-09-10 DOI:10.1109/TGRS.2024.3457517
Haoxiang Chen;Nannan Li;Dongjin Li;Jianwei Lv;Wei Zhao;Rufei Zhang;Jingyu Xu
{"title":"Multiple Object Tracking in Satellite Video With Graph-Based Multiclue Fusion Tracker","authors":"Haoxiang Chen;Nannan Li;Dongjin Li;Jianwei Lv;Wei Zhao;Rufei Zhang;Jingyu Xu","doi":"10.1109/TGRS.2024.3457517","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of satellite technology, satellite video has emerged as a key method for acquiring dynamic terrestrial information, facilitating multiple object tracking (MOT). Satellites are capable of surveying vast urban landscapes, yet the observed objects are small and dispersed among complex interference from the background, heightening the challenges in detection and association tasks for object tracking. However, current trackers often dissociate the classification task from the localization task, leading to drift in tiny object detection (TOD), and rely on prior knowledge for clue ranking, limiting model robustness. In this article, we introduce the graph-based multiclue fusion tracker (GMFTracker). Initially, we introduce a sparse sampling-based feature map correction approach to rectify the misalignment between the classification and localization feature maps. Furthermore, we developed graph neural networks (GNNs) for object relationship modeling, free from presuppositions, to tackle association challenges using relational features. GMFTracker was rigorously tested on VISO, CGSTL, and TinyPerson datasets, demonstrating its competitive performance relative to contemporary studies.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10672539/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of satellite technology, satellite video has emerged as a key method for acquiring dynamic terrestrial information, facilitating multiple object tracking (MOT). Satellites are capable of surveying vast urban landscapes, yet the observed objects are small and dispersed among complex interference from the background, heightening the challenges in detection and association tasks for object tracking. However, current trackers often dissociate the classification task from the localization task, leading to drift in tiny object detection (TOD), and rely on prior knowledge for clue ranking, limiting model robustness. In this article, we introduce the graph-based multiclue fusion tracker (GMFTracker). Initially, we introduce a sparse sampling-based feature map correction approach to rectify the misalignment between the classification and localization feature maps. Furthermore, we developed graph neural networks (GNNs) for object relationship modeling, free from presuppositions, to tackle association challenges using relational features. GMFTracker was rigorously tested on VISO, CGSTL, and TinyPerson datasets, demonstrating its competitive performance relative to contemporary studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于图形的多线索融合跟踪器在卫星视频中跟踪多个物体
随着卫星技术的飞速发展,卫星视频已成为获取地面动态信息、促进多目标跟踪(MOT)的重要方法。卫星能够勘测广阔的城市景观,但观测到的物体很小,而且分散在复杂的背景干扰中,这给物体跟踪的检测和关联任务带来了更大的挑战。然而,目前的跟踪器往往将分类任务与定位任务分离开来,导致微小物体检测(TOD)的漂移,并且依赖先验知识进行线索排序,限制了模型的鲁棒性。本文介绍了基于图的多线索融合跟踪器(GMFTracker)。首先,我们引入了一种基于稀疏采样的特征图校正方法,以纠正分类特征图和定位特征图之间的错位。此外,我们还开发了用于对象关系建模的图神经网络(GNN),摆脱了预设,利用关系特征解决关联难题。我们在 VISO、CGSTL 和 TinyPerson 数据集上对 GMFTracker 进行了严格测试,证明其性能与当代研究相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Remote sensing images destriping via nonconvex regularization and fast regional decomposition An Enhanced Global Feature-Guided Network Based on Multiple Filtering Noise Reduction for Remote Sensing Image Compression SHBGAN: Hybrid Bilateral Attention GAN for Seismic Image Super-Resolution Reconstruction FDBANet: A Fusion Frequency Domain Denoising and Multi-Scale Boundary Attention Network for Sonar Image Semantic Segmentation Remote-Sensing Image Scene Classification via Graph Template Enhancement and Supplementation Network with Dual-Teacher Knowledge Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1