Density, Viscosity, Refractive Index, and Surface Tension of Binary Mixtures of 3-oxa-1,5-Pentanediol with 2-Propanol, 1,2,3-Propanetriol, and 1-Decanol from 283.15 to 403.15 K as Reference Systems for Evaporation Experiments

IF 2 3区 工程技术 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemical & Engineering Data Pub Date : 2024-08-29 DOI:10.1021/acs.jced.4c0015210.1021/acs.jced.4c00152
David Appelhaus*, Fabian Claus, Sabine Knoblauch, Katharina Jasch* and Stephan Scholl*, 
{"title":"Density, Viscosity, Refractive Index, and Surface Tension of Binary Mixtures of 3-oxa-1,5-Pentanediol with 2-Propanol, 1,2,3-Propanetriol, and 1-Decanol from 283.15 to 403.15 K as Reference Systems for Evaporation Experiments","authors":"David Appelhaus*,&nbsp;Fabian Claus,&nbsp;Sabine Knoblauch,&nbsp;Katharina Jasch* and Stephan Scholl*,&nbsp;","doi":"10.1021/acs.jced.4c0015210.1021/acs.jced.4c00152","DOIUrl":null,"url":null,"abstract":"<p >Thermophysical properties of potential reference systems for the characterization of evaporators, especially wiped film evaporators, are presented. Therefore, the binary mixtures of diethylene glycol (IUPAC: 3-oxa-1,5-pentanediol) with decan-1-ol, glycerol (IUPAC: 1,2,3-propanetriol) and isopropyl alcohol (IUPAC: 2-propanol) were considered. The refractive index at 293.15 K (589 nm) was measured using a refractrometer. The density was measured in a temperature range from 283.15 to 403.15 K depending on the boiling temperature of the fluids using an oscillating U-tube. The dynamic viscosity was determined in a temperature range from 283.15 to 403.15 K depending on the boiling temperature of the fluids using a kinematic viscometer based on a modified Couette measuring principle (Stabinger viscometer). The surface tension was measured in a temperature range from 293.15 to 363.15 K using the pendant drop method. The temperature dependence of the density, viscosity and surface tension of the pure components was described using standard literature models. The excess properties excess refractive index, excess molar volume, Δln(η/mPa·s)<sup><i>E</i></sup> and excess parachor were modeled using a temperature dependent Redlich–Kister approach.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"69 9","pages":"2927–2948 2927–2948"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jced.4c00152","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jced.4c00152","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermophysical properties of potential reference systems for the characterization of evaporators, especially wiped film evaporators, are presented. Therefore, the binary mixtures of diethylene glycol (IUPAC: 3-oxa-1,5-pentanediol) with decan-1-ol, glycerol (IUPAC: 1,2,3-propanetriol) and isopropyl alcohol (IUPAC: 2-propanol) were considered. The refractive index at 293.15 K (589 nm) was measured using a refractrometer. The density was measured in a temperature range from 283.15 to 403.15 K depending on the boiling temperature of the fluids using an oscillating U-tube. The dynamic viscosity was determined in a temperature range from 283.15 to 403.15 K depending on the boiling temperature of the fluids using a kinematic viscometer based on a modified Couette measuring principle (Stabinger viscometer). The surface tension was measured in a temperature range from 293.15 to 363.15 K using the pendant drop method. The temperature dependence of the density, viscosity and surface tension of the pure components was described using standard literature models. The excess properties excess refractive index, excess molar volume, Δln(η/mPa·s)E and excess parachor were modeled using a temperature dependent Redlich–Kister approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
283.15 至 403.15 K 作为蒸发实验参考系的 3-氧杂-1,5-戊二醇与 2-丙醇、1,2,3-丙三醇和 1-癸醇二元混合物的密度、粘度、折射率和表面张力
介绍了用于鉴定蒸发器,特别是抹膜蒸发器的潜在参考系统的热物理性质。因此,考虑了二甘醇(IUPAC:3-oxa-1,5-戊二醇)与癸-1-醇、甘油(IUPAC:1,2,3-丙三醇)和异丙醇(IUPAC:2-丙醇)的二元混合物。使用折射仪测量了 293.15 K (589 nm) 时的折射率。密度是在 283.15 至 403.15 K 的温度范围内根据液体的沸腾温度使用振荡 U 型管测量的。根据流体的沸腾温度,在 283.15 至 403.15 K 的温度范围内使用基于改良库埃特测量原理的运动粘度计(斯塔宾格粘度计)测定动态粘度。使用垂滴法测量了 293.15 至 363.15 K 温度范围内的表面张力。纯成分的密度、粘度和表面张力的温度依赖性是用标准文献模型描述的。过量特性过量折射率、过量摩尔体积、Δln(η/mPa-s)E 和过量降落伞则采用与温度相关的 Redlich-Kister 方法进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical & Engineering Data
Journal of Chemical & Engineering Data 工程技术-工程:化工
CiteScore
5.20
自引率
19.20%
发文量
324
审稿时长
2.2 months
期刊介绍: The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Predictive Molecular Simulation Studies on the Vapor–Liquid Equilibria of 10 Binary Mixtures Containing Different Hydrofluoroolefins Vapor–Liquid Equilibrium Phase Behavior for Binary Mixtures Isopropyl Alcohol and Methyl Ethyl Ketone with Dimethyl Sulfoxide (−)-Epicatechin Solubility in Aqueous Mixtures of Eutectic Solvents and Their Constituents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1