Self-Diffusion of Ge in Amorphous GexSi1–x Films Studied In Situ by Neutron Reflectometry

IF 5.7 Q2 CHEMISTRY, PHYSICAL ACS Materials Au Pub Date : 2024-07-23 DOI:10.1021/acsmaterialsau.4c0004610.1021/acsmaterialsau.4c00046
Erwin Hüger*, Jochen Stahn and Harald Schmidt, 
{"title":"Self-Diffusion of Ge in Amorphous GexSi1–x Films Studied In Situ by Neutron Reflectometry","authors":"Erwin Hüger*,&nbsp;Jochen Stahn and Harald Schmidt,&nbsp;","doi":"10.1021/acsmaterialsau.4c0004610.1021/acsmaterialsau.4c00046","DOIUrl":null,"url":null,"abstract":"<p >Ge<sub><i>x</i></sub>Si<sub>1–<i>x</i></sub> alloys are gaining renewed interest for many applications in electronics and optics, especially for miniaturized devices showing quantum size effects. Point defects and atomic diffusion play a crucial role in miniaturized and metastable systems. In the present work, Ge self-diffusion in sputter deposited amorphous Ge<sub><i>x</i></sub>Si<sub>1–<i>x</i></sub> alloys is studied in situ as a function of Ge content <i>x</i> = 0.13, 0.43, 0.8, and 1.0 by neutron reflectometry. The determined Ge self-diffusivities obey the Arrhenius law in the investigated temperature ranges. The higher the Ge content <i>x</i>, the higher the Ge self-diffusivity at the same temperature. The activation enthalpy decreases with <i>x</i> from 4.4 eV for self-diffusion in pure silicon films to about 2 eV self-diffusion in Ge<sub>0.8</sub>Si<sub>0.2</sub> and Ge. The decrease of the activation enthalpy for amorphous Ge<sub><i>x</i></sub>Si<sub>1–<i>x</i></sub> is similar to the case of crystalline Ge<sub><i>x</i></sub>Si<sub>1–<i>x</i></sub>. Possible explanations are discussed.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"4 5","pages":"537–546 537–546"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

GexSi1–x alloys are gaining renewed interest for many applications in electronics and optics, especially for miniaturized devices showing quantum size effects. Point defects and atomic diffusion play a crucial role in miniaturized and metastable systems. In the present work, Ge self-diffusion in sputter deposited amorphous GexSi1–x alloys is studied in situ as a function of Ge content x = 0.13, 0.43, 0.8, and 1.0 by neutron reflectometry. The determined Ge self-diffusivities obey the Arrhenius law in the investigated temperature ranges. The higher the Ge content x, the higher the Ge self-diffusivity at the same temperature. The activation enthalpy decreases with x from 4.4 eV for self-diffusion in pure silicon films to about 2 eV self-diffusion in Ge0.8Si0.2 and Ge. The decrease of the activation enthalpy for amorphous GexSi1–x is similar to the case of crystalline GexSi1–x. Possible explanations are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用中子反射仪现场研究非晶态 GexSi1-x 薄膜中 Ge 的自扩散性
GexSi1-x 合金在电子学和光学领域的许多应用中,尤其是在显示量子尺寸效应的微型设备中,重新获得了关注。点缺陷和原子扩散在微型化和可蜕变系统中起着至关重要的作用。本研究通过中子反射仪,现场研究了溅射沉积非晶 GexSi1-x 合金中 Ge 的自扩散与 Ge 含量 x = 0.13、0.43、0.8 和 1.0 的函数关系。在所研究的温度范围内,测定的 Ge 自衍射率符合阿伦尼乌斯定律。在相同温度下,Ge 含量 x 越高,Ge 自扩散率越高。活化焓随 x 值的增加而降低,从纯硅薄膜中 4.4 eV 的自扩散值降低到 Ge0.8Si0.2 和 Ge 中约 2 eV 的自扩散值。无定形 GexSi1-x 的活化焓的降低与晶体 GexSi1-x 的情况相似。讨论了可能的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
期刊最新文献
Issue Editorial Masthead Issue Publication Information Nanostructured Thin Films Enhancing the Performance of New Organic Electronic Devices: Does It Make Sense? Nanostructured Thin Films Enhancing the Performance of New Organic Electronic Devices: Does It Make Sense? Understanding Defect-Mediated Ion Migration in Semiconductors using Atomistic Simulations and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1