Zhihang Zhang , Yalan Luo , Xijing Zhuang , Haifeng Gao , Qi Yang , Hailong Chen
{"title":"Emodin alleviates lung injury via the miR-217-5p/Sirt1 axis in rats with severe acute pancreatitis","authors":"Zhihang Zhang , Yalan Luo , Xijing Zhuang , Haifeng Gao , Qi Yang , Hailong Chen","doi":"10.1016/j.jphs.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Acute lung injury (ALI) is closely related to high mortality in severe acute pancreatitis (SAP). This study unveils the therapeutic effect and mechanism of miR-217-5p on SAP-associated ALI. The miR-217-5p RNA expression was significantly up-regulated in lipopolysaccharide (LPS)-stimulated primary rat alveolar epithelial type II cells (AEC II) and sodium taurocholate-treated pancreas and lung in SAP rats. miR-217 inhibition protected AEC II from LPS-induced damage by inhibiting apoptosis and reducing the TNF-α, IL-6, and ROS levels. miR-217 inhibition suppressed apoptosis and alleviated mitochondrial damage through mitochondria-mediated apoptotic pathway <em>in vitro</em>. Sirt1 is a direct target of miR-217-5p. Dual-luciferase reporter assay confirmed the binding of miR-217-5p to Sirt1 mRNA 3′-UTR. The rescue experiment identified that the anti-apoptotic, anti-inflammatory, and anti-oxidative effects of miR-217 inhibition were mediated by Sirt1 <em>in vitro</em>. Emodin (EMO) protected AEC II from LPS-induced damage and alleviated pancreatic and lung tissue injuries. EMO exerted similar effects as miR-217 inhibition <em>in vitro</em> and <em>in vivo</em>. The effects of EMO were abolished by miR-217 overexpression. In conclusion, miR-217-5p inhibition exerts protective effects on SAP-ALI <em>in vitro</em> and <em>in vivo</em> by repressing apoptosis, inflammation, and oxidative stress through Sirt1 activation. EMO protects against lung injuries in SAP-associated ALI rats through miR-217-5p/Sirt1 axis.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 3","pages":"Pages 188-197"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S134786132400063X/pdfft?md5=3d53035ef4c6f969c6fe0d4f04792bd1&pid=1-s2.0-S134786132400063X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S134786132400063X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) is closely related to high mortality in severe acute pancreatitis (SAP). This study unveils the therapeutic effect and mechanism of miR-217-5p on SAP-associated ALI. The miR-217-5p RNA expression was significantly up-regulated in lipopolysaccharide (LPS)-stimulated primary rat alveolar epithelial type II cells (AEC II) and sodium taurocholate-treated pancreas and lung in SAP rats. miR-217 inhibition protected AEC II from LPS-induced damage by inhibiting apoptosis and reducing the TNF-α, IL-6, and ROS levels. miR-217 inhibition suppressed apoptosis and alleviated mitochondrial damage through mitochondria-mediated apoptotic pathway in vitro. Sirt1 is a direct target of miR-217-5p. Dual-luciferase reporter assay confirmed the binding of miR-217-5p to Sirt1 mRNA 3′-UTR. The rescue experiment identified that the anti-apoptotic, anti-inflammatory, and anti-oxidative effects of miR-217 inhibition were mediated by Sirt1 in vitro. Emodin (EMO) protected AEC II from LPS-induced damage and alleviated pancreatic and lung tissue injuries. EMO exerted similar effects as miR-217 inhibition in vitro and in vivo. The effects of EMO were abolished by miR-217 overexpression. In conclusion, miR-217-5p inhibition exerts protective effects on SAP-ALI in vitro and in vivo by repressing apoptosis, inflammation, and oxidative stress through Sirt1 activation. EMO protects against lung injuries in SAP-associated ALI rats through miR-217-5p/Sirt1 axis.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.