Biying Xue , Yong Zhang , Houjie Wang , Yanguang Dou , Xiao Wu , Shipu Bi , Jingyi Cong , Gang Hu
{"title":"Impact of seasonal variations in fronts on suspended sediments transport off the coastal area of Fujian Province","authors":"Biying Xue , Yong Zhang , Houjie Wang , Yanguang Dou , Xiao Wu , Shipu Bi , Jingyi Cong , Gang Hu","doi":"10.1016/j.csr.2024.105330","DOIUrl":null,"url":null,"abstract":"<div><p>The Zhejiang-Fujian (Zhe-Min) coastal muddy area plays a crucial role in facilitating sediment exchange through a cross-front. The mud depocenter off the Zhe-Min coastal area is a source of suspended sediment that can be transported to the continental shelf of the East China Sea (ECS). Although the front of the inner shelf of the ECS has been extensively reported, the cross-front material transport off the coastal area of Zhe-Min in summer has not been well studied, especially using measured data. To reveal how the front controls the transport of suspended sediment, this study focuses on the impact of fronts on the dispersion of suspended sediment off the coastal area of Fujian Province in different seasons. The results indicate that the front acts as a barrier, inhibiting the dispersion of suspended sediment into the sea. The high-concentration suspended sediment is mainly found to the northwest of the front, with an average SSC of 8.5 mg/L in winter and 3.1 mg/L in summer. The suspended sediment concentration (SSC) follows a V-shaped distribution along the cross-isobath transects, with lower SSC observed at the 50-m isobath compared with the shallow water area and the deep water area. The SSC at the front was the lowest, with an average concentration of 2.3 mg/L in winter and 1.9 mg/L in summer. The front is crucial for the development of the Zhe-Min coastal muddy area. The winter monsoon is strong, resulting in a sufficient supply of suspended sediments in the muddy area and a high transport flux of suspended sediments in the nearshore. The front hinders the dispersion of high-concentrated sediment from the nearshore to the offshore, resulting in the deposition of fine-grained sediments in the nearshore and the formation of an inner shelf muddy sedimentary zone. The findings of this study will help improve our understanding of the sediment source-to-sink processes in the ECS and land–sea interactions.</p></div>","PeriodicalId":50618,"journal":{"name":"Continental Shelf Research","volume":"282 ","pages":"Article 105330"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continental Shelf Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278434324001602","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The Zhejiang-Fujian (Zhe-Min) coastal muddy area plays a crucial role in facilitating sediment exchange through a cross-front. The mud depocenter off the Zhe-Min coastal area is a source of suspended sediment that can be transported to the continental shelf of the East China Sea (ECS). Although the front of the inner shelf of the ECS has been extensively reported, the cross-front material transport off the coastal area of Zhe-Min in summer has not been well studied, especially using measured data. To reveal how the front controls the transport of suspended sediment, this study focuses on the impact of fronts on the dispersion of suspended sediment off the coastal area of Fujian Province in different seasons. The results indicate that the front acts as a barrier, inhibiting the dispersion of suspended sediment into the sea. The high-concentration suspended sediment is mainly found to the northwest of the front, with an average SSC of 8.5 mg/L in winter and 3.1 mg/L in summer. The suspended sediment concentration (SSC) follows a V-shaped distribution along the cross-isobath transects, with lower SSC observed at the 50-m isobath compared with the shallow water area and the deep water area. The SSC at the front was the lowest, with an average concentration of 2.3 mg/L in winter and 1.9 mg/L in summer. The front is crucial for the development of the Zhe-Min coastal muddy area. The winter monsoon is strong, resulting in a sufficient supply of suspended sediments in the muddy area and a high transport flux of suspended sediments in the nearshore. The front hinders the dispersion of high-concentrated sediment from the nearshore to the offshore, resulting in the deposition of fine-grained sediments in the nearshore and the formation of an inner shelf muddy sedimentary zone. The findings of this study will help improve our understanding of the sediment source-to-sink processes in the ECS and land–sea interactions.
期刊介绍:
Continental Shelf Research publishes articles dealing with the biological, chemical, geological and physical oceanography of the shallow marine environment, from coastal and estuarine waters out to the shelf break. The continental shelf is a critical environment within the land-ocean continuum, and many processes, functions and problems in the continental shelf are driven by terrestrial inputs transported through the rivers and estuaries to the coastal and continental shelf areas. Manuscripts that deal with these topics must make a clear link to the continental shelf. Examples of research areas include:
Physical sedimentology and geomorphology
Geochemistry of the coastal ocean (inorganic and organic)
Marine environment and anthropogenic effects
Interaction of physical dynamics with natural and manmade shoreline features
Benthic, phytoplankton and zooplankton ecology
Coastal water and sediment quality, and ecosystem health
Benthic-pelagic coupling (physical and biogeochemical)
Interactions between physical dynamics (waves, currents, mixing, etc.) and biogeochemical cycles
Estuarine, coastal and shelf sea modelling and process studies.