Replacement of the essential nitro group by electrophilic warheads towards nitro-free antimycobacterial benzothiazinones

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2024-09-05 DOI:10.1016/j.ejmech.2024.116849
{"title":"Replacement of the essential nitro group by electrophilic warheads towards nitro-free antimycobacterial benzothiazinones","authors":"","doi":"10.1016/j.ejmech.2024.116849","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrobenzothiazinones (BTZs) are undergoing late-stage development as a novel class of potent antitubercular drug candidates with two compounds in clinical phases. BTZs inhibit decaprenylphosphoryl-β-<span>d</span>-ribose oxidase 1 (DprE1), a key enzyme in cell wall biosynthesis of mycobacteria. Their mechanism of action involves an <em>in-situ</em>-reduction of the nitro moiety to a reactive nitroso intermediate capable of covalent binding to Cys387 in the catalytic cavity. The electron-deficient nature of the aromatic core is a key driver for the formation of hydride-Meisenheimer complexes (HMC) as main metabolites <em>in vivo</em>. To mimic the electrophilic character of the nitroso moiety, bioisosteric replacement with different electrophilic warheads was attempted to reduce HMC formation without compromising covalent reactivity. Herein, we synthesized and characterized various covalent warheads covering different reaction principles. Covalent inhibition was confirmed for most active antimycobacterial compounds by enzymatic inhibition assays and peptide fragment analysis.</p></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S022352342400730X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrobenzothiazinones (BTZs) are undergoing late-stage development as a novel class of potent antitubercular drug candidates with two compounds in clinical phases. BTZs inhibit decaprenylphosphoryl-β-d-ribose oxidase 1 (DprE1), a key enzyme in cell wall biosynthesis of mycobacteria. Their mechanism of action involves an in-situ-reduction of the nitro moiety to a reactive nitroso intermediate capable of covalent binding to Cys387 in the catalytic cavity. The electron-deficient nature of the aromatic core is a key driver for the formation of hydride-Meisenheimer complexes (HMC) as main metabolites in vivo. To mimic the electrophilic character of the nitroso moiety, bioisosteric replacement with different electrophilic warheads was attempted to reduce HMC formation without compromising covalent reactivity. Herein, we synthesized and characterized various covalent warheads covering different reaction principles. Covalent inhibition was confirmed for most active antimycobacterial compounds by enzymatic inhibition assays and peptide fragment analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用亲电弹头取代重要的硝基,实现不含硝基的抗霉菌苯并噻嗪酮化合物
硝基苯并噻嗪酮(BTZs)作为一类新型强效抗结核候选药物正在进行后期开发,目前有两种化合物已进入临床阶段。BTZs 可抑制十烯丙基磷酸-β-d-核糖氧化酶 1(DprE1),这是分枝杆菌细胞壁生物合成过程中的一种关键酶。它们的作用机理包括将硝基分子原位还原成一种活性亚硝基中间体,这种中间体能够与催化腔中的 Cys387 共价结合。芳香族核心的缺电子特性是形成作为体内主要代谢物的氢化物-迈森海默复合物(HMC)的关键驱动因素。为了模拟亚硝基的亲电特性,我们尝试用不同的亲电弹头进行生物异构替换,以减少 HMC 的形成,同时不影响共价反应活性。在此,我们合成并鉴定了涵盖不同反应原理的各种共价弹头。通过酶抑制实验和肽片段分析,证实了大多数活性抗霉菌化合物的共价抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
Discovery of Novel Fused-heterocycle-bearing Diarypyrimidine Derivatives as HIV-1 Potent NNRTIs Targeting Tolerant Region I for Enhanced Antiviral Activity and Resistance Profile Discovery of 4-(4-(3-(1-(2-(piperidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)isoxazol-5-yl)phenyl)morpholine as a novel c-Myc inhibitor against lung cancer in vitro and in vivo Discovery of Novel Phenyl Urea SHP2 Inhibitors with Anti-Colon Cancer and Potential Immunomodulatory Effects Design and Synthesis of Glycofullerene Derivatives as Novel Photosensitizer for Potential Application in PDT to Treat Cancer Discovery of New Fungal Jumonji H3K27 Demethylase Inhibitors for the Treatment of Cryptococcus neoformans and Candida auris Infections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1