A novel noiselayer-decoder driven blind watermarking network

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Displays Pub Date : 2024-09-04 DOI:10.1016/j.displa.2024.102823
Xiaorui Zhang , Rui Jiang , Wei Sun , Sunil Kr. Jha
{"title":"A novel noiselayer-decoder driven blind watermarking network","authors":"Xiaorui Zhang ,&nbsp;Rui Jiang ,&nbsp;Wei Sun ,&nbsp;Sunil Kr. Jha","doi":"10.1016/j.displa.2024.102823","DOIUrl":null,"url":null,"abstract":"<div><p>Most blind watermarking methods adopt the Encode-Noiselayer-Decoder network architecture, called END. However, there are issues that impact the imperceptibility and robustness of the watermarking, such as the encoder blindly embedding redundant features, adversarial training failing to simulate unknown noise effectively, and the limited capability of single-scale feature extraction. To address these challenges, we propose a new Noiselayer-Decoder-driven blind watermarking network, called ND-END, which leverages prior knowledge of the noise layer and features extracted by the decoder to guide the encoder for generating images with fewer redundant modifications, enhancing the imperceptibility. To effectively simulate the unknown noise caused during adversarial training, we introduce an unknown noise layer based on the guided denoising diffusion probabilistic model, which gradually modifies the mean value of the predicted noise during the image generation process. It produces unknown noise images that closely resemble the encoded images but can mislead the decoder. Moreover, we propose a multi-scale spatial-channel feature extraction method for extracting multi-scale message features from the noised image, which aids in message extraction. Experimental results demonstrate the effectiveness of our model, ND-END achieves a lower bit error rate while improving the peak signal-to-noise ratio by approximately 6 dB (from about 33.5 dB to 39.5 dB).</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"85 ","pages":"Article 102823"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001872","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Most blind watermarking methods adopt the Encode-Noiselayer-Decoder network architecture, called END. However, there are issues that impact the imperceptibility and robustness of the watermarking, such as the encoder blindly embedding redundant features, adversarial training failing to simulate unknown noise effectively, and the limited capability of single-scale feature extraction. To address these challenges, we propose a new Noiselayer-Decoder-driven blind watermarking network, called ND-END, which leverages prior knowledge of the noise layer and features extracted by the decoder to guide the encoder for generating images with fewer redundant modifications, enhancing the imperceptibility. To effectively simulate the unknown noise caused during adversarial training, we introduce an unknown noise layer based on the guided denoising diffusion probabilistic model, which gradually modifies the mean value of the predicted noise during the image generation process. It produces unknown noise images that closely resemble the encoded images but can mislead the decoder. Moreover, we propose a multi-scale spatial-channel feature extraction method for extracting multi-scale message features from the noised image, which aids in message extraction. Experimental results demonstrate the effectiveness of our model, ND-END achieves a lower bit error rate while improving the peak signal-to-noise ratio by approximately 6 dB (from about 33.5 dB to 39.5 dB).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由噪声层解码器驱动的新型盲水印网络
大多数盲水印方法都采用编码器-异层解码器网络结构,即END。然而,有些问题会影响水印的不可感知性和鲁棒性,如编码器盲目嵌入冗余特征、对抗训练无法有效模拟未知噪声、单尺度特征提取能力有限等。为了应对这些挑战,我们提出了一种新的噪声层-解码器驱动盲水印网络,称为 ND-END,它利用噪声层的先验知识和解码器提取的特征来指导编码器生成具有较少冗余修改的图像,从而增强了不可感知性。为了有效模拟对抗训练过程中产生的未知噪声,我们引入了基于引导去噪扩散概率模型的未知噪声层,在图像生成过程中逐步修改预测噪声的平均值。它生成的未知噪声图像与编码图像非常相似,但会误导解码器。此外,我们还提出了一种多尺度空间信道特征提取方法,用于从噪声图像中提取多尺度信息特征,从而帮助信息提取。实验结果表明了我们模型的有效性,ND-END 实现了更低的误码率,同时将峰值信噪比提高了约 6 dB(从约 33.5 dB 提高到 39.5 dB)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
期刊最新文献
DHDP-SLAM: Dynamic Hierarchical Dirichlet Process based data association for semantic SLAM Fabrication and Reflow of Indium Bumps for Active-Matrix Micro-LED Display of 3175 PPI Perceptually-calibrated synergy network for night-time image quality assessment with enhancement booster and knowledge cross-sharing High performance A-PWM μLED pixel circuit design using double gate oxide TFTs Frequency-spatial interaction network for gaze estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1