{"title":"IoTSLE: Securing IoT systems in low-light environments through finite automata, deep learning and DNA computing based image steganographic model","authors":"Subhadip Mukherjee, Somnath Mukhopadhyay, Sunita Sarkar","doi":"10.1016/j.iot.2024.101358","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of Things (IoT) is a vast network of interconnected devices and systems, including wearables, smart home appliances, industrial machinery, and vehicles, equipped with sensors and connectivity. The data collected by the IoT devices are transmitted over a network, for processing and analyzing that data, so that appropriate actions can be initiated. Security of IoT systems is a major concern, as IoT devices collect and transmit crucial information. But images captured in low-light environments pose a challenge for IoT security by limiting the ability to accurately identify objects and people, increasing the risk of spoofing, and hindering forensic analysis. This paper unfolds a novel framework for IoT security using Steganography in Low-light Environment (IoTSLE) by image enhancement and data concealment. In proposed IoTSLE, initially, the low-light images, captured by the IoT devices in a low-light environment, are enhanced by band learning with recursion and band recomposition. After that, the secret information is concealed within the enhanced image. This concealment is supervised by using a specially designed finite automata for genome sequence encoding and 2-2-2 embedding. The proposed steganography technique is capable of hiding secret information within a 512 × 512 RGB image with the payload of 2<!--> <!-->097<!--> <!-->152 bits. The experiments like, PSNR, SSIM, Q-Index, BER, NCC, and NAE etc. are conducted to analyze the imperceptibility and security of IoTSLE. The proposed IoTSLE is useful for various IoT systems in different private and government fields like, defense agencies, digital forensics, agriculture, healthcare industry, cybersecurity firms, smart home, smart city etc.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101358"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002993","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) is a vast network of interconnected devices and systems, including wearables, smart home appliances, industrial machinery, and vehicles, equipped with sensors and connectivity. The data collected by the IoT devices are transmitted over a network, for processing and analyzing that data, so that appropriate actions can be initiated. Security of IoT systems is a major concern, as IoT devices collect and transmit crucial information. But images captured in low-light environments pose a challenge for IoT security by limiting the ability to accurately identify objects and people, increasing the risk of spoofing, and hindering forensic analysis. This paper unfolds a novel framework for IoT security using Steganography in Low-light Environment (IoTSLE) by image enhancement and data concealment. In proposed IoTSLE, initially, the low-light images, captured by the IoT devices in a low-light environment, are enhanced by band learning with recursion and band recomposition. After that, the secret information is concealed within the enhanced image. This concealment is supervised by using a specially designed finite automata for genome sequence encoding and 2-2-2 embedding. The proposed steganography technique is capable of hiding secret information within a 512 × 512 RGB image with the payload of 2 097 152 bits. The experiments like, PSNR, SSIM, Q-Index, BER, NCC, and NAE etc. are conducted to analyze the imperceptibility and security of IoTSLE. The proposed IoTSLE is useful for various IoT systems in different private and government fields like, defense agencies, digital forensics, agriculture, healthcare industry, cybersecurity firms, smart home, smart city etc.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.