Positivity preserving and unconditionally stable numerical scheme for the three-dimensional modified Fisher–Kolmogorov–Petrovsky–Piskunov equation

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Computational and Applied Mathematics Pub Date : 2024-09-10 DOI:10.1016/j.cam.2024.116273
{"title":"Positivity preserving and unconditionally stable numerical scheme for the three-dimensional modified Fisher–Kolmogorov–Petrovsky–Piskunov equation","authors":"","doi":"10.1016/j.cam.2024.116273","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a numerical approach for the practical solution of the modified Fisher–Kolmogorov–Petrovsky–Piskunov equation that describes population dynamics. The diffusion term and nonlinear term is based on the operator splitting method and interpolation method, respectively. The analytic proof of the discrete maximum principle and positivity preserving for the numerical algorithm is demonstrated. Numerical solution calculated using the proposed method remains stable without blowing up, which implies that the proposed method is unconditionally stable. Numerical studies show that the proposed method is second-order convergence in space and first-order convergence in time. The performance and applicability of the proposed scheme are studied through various computational tests that present the effects of model parameters and evolution dynamics.</p></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005223","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a numerical approach for the practical solution of the modified Fisher–Kolmogorov–Petrovsky–Piskunov equation that describes population dynamics. The diffusion term and nonlinear term is based on the operator splitting method and interpolation method, respectively. The analytic proof of the discrete maximum principle and positivity preserving for the numerical algorithm is demonstrated. Numerical solution calculated using the proposed method remains stable without blowing up, which implies that the proposed method is unconditionally stable. Numerical studies show that the proposed method is second-order convergence in space and first-order convergence in time. The performance and applicability of the proposed scheme are studied through various computational tests that present the effects of model parameters and evolution dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维修正 Fisher-Kolmogorov-Petrovsky-Piskunov 方程的正性保持和无条件稳定数值方案
本文介绍了一种实际求解描述种群动态的修正 Fisher-Kolmogorov-Petrovsky-Piskunov 方程的数值方法。扩散项和非线性项分别基于算子分裂法和插值法。演示了离散最大原则的解析证明和数值算法的正保性。使用所提方法计算的数值解保持稳定,没有炸裂现象,这意味着所提方法是无条件稳定的。数值研究表明,所提方法在空间上具有二阶收敛性,在时间上具有一阶收敛性。通过对模型参数和演变动态影响的各种计算测试,研究了所提方案的性能和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
期刊最新文献
Third order two-step Runge–Kutta–Chebyshev methods Finite difference methods for stochastic Helmholtz equation driven by white noise Poisson noise removal based on non-convex hybrid regularizers Robust H∞ control for LFC of discrete T–S fuzzy MAPS with DFIG and time-varying delays Fading regularization method for an inverse boundary value problem associated with the biharmonic equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1