{"title":"Improve GMRACCF Qualifications via Collaborative Filtering in Vehicle Sales Chain","authors":"Beiteng Yang;Haibin Zhu;Dongning Liu","doi":"10.26599/TST.2023.9010145","DOIUrl":null,"url":null,"abstract":"The Vehicle Allocation Problem (VAP) in the vehicle sales chain has three bottlenecks in practice. The first is to collect relevant cooperation or conflict information, the second is to accurately quantify and analyze other factors affecting the distribution of cars, and the third is to establish a stable and rapid response to the vehicle allocation management method. In order to improve the real-time performance and reliability of vehicle allocation in the vehicle sales chain, it is crucial to find a method that can respond quickly and stabilize the vehicle allocation strategy. Therefore, this paper addresses these issues by extending Group Multi-Role Assignment with Cooperation and Conflict Factors (GMRACCF) from a new perspective. Through the logical reasoning of closure computation, the KD45 logic algorithm is used to find the implicit cognitive Cooperation and Conflict Factors (CCF). Therefore, a collaborative filtering comprehensive evaluation method is proposed to help administrators determine the influence weight of CCFs and Cooperation Scales (CSs) on the all-round performance according to their needs. Based on collaborative filtering, semantic modification is applied to resolve conflicts among qualifications. Large-scale simulation results show that the proposed method is feasible and robust, and provides a reliable decision-making reference in the vehicle sales chain.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 1","pages":"247-261"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10676354","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10676354/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
The Vehicle Allocation Problem (VAP) in the vehicle sales chain has three bottlenecks in practice. The first is to collect relevant cooperation or conflict information, the second is to accurately quantify and analyze other factors affecting the distribution of cars, and the third is to establish a stable and rapid response to the vehicle allocation management method. In order to improve the real-time performance and reliability of vehicle allocation in the vehicle sales chain, it is crucial to find a method that can respond quickly and stabilize the vehicle allocation strategy. Therefore, this paper addresses these issues by extending Group Multi-Role Assignment with Cooperation and Conflict Factors (GMRACCF) from a new perspective. Through the logical reasoning of closure computation, the KD45 logic algorithm is used to find the implicit cognitive Cooperation and Conflict Factors (CCF). Therefore, a collaborative filtering comprehensive evaluation method is proposed to help administrators determine the influence weight of CCFs and Cooperation Scales (CSs) on the all-round performance according to their needs. Based on collaborative filtering, semantic modification is applied to resolve conflicts among qualifications. Large-scale simulation results show that the proposed method is feasible and robust, and provides a reliable decision-making reference in the vehicle sales chain.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.