UAV-Aided Localization and Communication: Joint Frame Structure, Beamwidth, and Power Allocation

Tianhao Liang;Tingting Zhang;Sheng Zhou;Wentao Liu;Dong Li;Qinyu Zhang
{"title":"UAV-Aided Localization and Communication: Joint Frame Structure, Beamwidth, and Power Allocation","authors":"Tianhao Liang;Tingting Zhang;Sheng Zhou;Wentao Liu;Dong Li;Qinyu Zhang","doi":"10.1109/JSAS.2024.3439272","DOIUrl":null,"url":null,"abstract":"In wireless sensors networks, integrating localization and communication technique is crucial for efficient spectrum and hardware utilizations. In this article, we present a novel framework of the unmanned aerial vehicle (UAV)-aided localization and communication for ground node (GN), where the average spectral efficiency (SE) is used to reveal the intricate relationship among the frame structure, channel estimation error, and localization accuracy. In particular, we first derive the lower bounds for channel estimation error and the 3-D location prediction error, respectively. Leveraging these comprehensive analysis, we formulate a problem to maximize the average SE in the UAV–GN communication, where the frame structure, beamwidth, and power allocation can be jointly optimized. Subsequently, we propose an efficient iterative algorithm to address this nonconvex problem with closed-form expressions for beamwidth design and power allocation. Numerical results demonstrate that the performance of our proposed method can approach the upper bound with low complexity, and achieve over 70% performance gain compared with communication-only benchmarks. In addition, the analysis highlights the dominated impacts of the Doppler effect on the average SE.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"1 ","pages":"154-165"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623800","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10623800/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In wireless sensors networks, integrating localization and communication technique is crucial for efficient spectrum and hardware utilizations. In this article, we present a novel framework of the unmanned aerial vehicle (UAV)-aided localization and communication for ground node (GN), where the average spectral efficiency (SE) is used to reveal the intricate relationship among the frame structure, channel estimation error, and localization accuracy. In particular, we first derive the lower bounds for channel estimation error and the 3-D location prediction error, respectively. Leveraging these comprehensive analysis, we formulate a problem to maximize the average SE in the UAV–GN communication, where the frame structure, beamwidth, and power allocation can be jointly optimized. Subsequently, we propose an efficient iterative algorithm to address this nonconvex problem with closed-form expressions for beamwidth design and power allocation. Numerical results demonstrate that the performance of our proposed method can approach the upper bound with low complexity, and achieve over 70% performance gain compared with communication-only benchmarks. In addition, the analysis highlights the dominated impacts of the Doppler effect on the average SE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机辅助定位与通信:联合帧结构、波束宽度和功率分配
在无线传感器网络中,整合定位和通信技术对于高效利用频谱和硬件至关重要。本文提出了一种新颖的无人机辅助定位和地面节点(GN)通信框架,利用平均频谱效率(SE)来揭示帧结构、信道估计误差和定位精度之间的复杂关系。其中,我们首先分别得出了信道估计误差和三维位置预测误差的下限。利用这些综合分析,我们提出了一个在无人机-GN 通信中最大化平均 SE 的问题,其中帧结构、波束宽度和功率分配可以共同优化。随后,我们提出了一种高效的迭代算法来解决这个非凸问题,并给出了波束宽度设计和功率分配的闭式表达式。数值结果表明,我们提出的方法能以较低的复杂度接近上限,与纯通信基准相比,性能提高了 70% 以上。此外,分析还强调了多普勒效应对平均 SE 的主要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey on Digital Twins: Enabling Technologies, Use Cases, Application, Open Issues, and More FallAware: An Explainable Learning Approach to Robust Fall Detection With WiFi Nonparametric Multitarget Data Association and Tracking for Multistatic Radars SrcSense: Robust WiFi-Based Motion Source Recognition via Signal-Informed Deep Learning Assessing the Impact of Distractions Using a Virtual-Reality-Based GO/NOGO Task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1