Fine particulate air pollution estimation in Ouagadougou using satellite aerosol optical depth and meteorological parameters†

IF 2.8 Q3 ENVIRONMENTAL SCIENCES Environmental science: atmospheres Pub Date : 2024-07-22 DOI:10.1039/D4EA00057A
Joe Adabouk Amooli, Kwame Oppong Hackman, Bernard Nana and Daniel M. Westervelt
{"title":"Fine particulate air pollution estimation in Ouagadougou using satellite aerosol optical depth and meteorological parameters†","authors":"Joe Adabouk Amooli, Kwame Oppong Hackman, Bernard Nana and Daniel M. Westervelt","doi":"10.1039/D4EA00057A","DOIUrl":null,"url":null,"abstract":"<p >This study estimates PM<small><sub>2.5</sub></small> concentrations in Ouagadougou using satellite-based aerosol optical depth (AOD) and meteorological parameters such as temperature, precipitation, relative humidity, wind speed, and wind direction. First, Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Decision Tree (DT), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models were developed using the available labeled data (AOD and meteorological parameters with corresponding PM<small><sub>2.5</sub></small> values) in the city. The XGBoost model outperformed all other models that were used, with a coefficient of determination (<em>R</em><small><sup>2</sup></small>) of 0.87 and a root-mean-square error (RMSE) of 15.8 μg m<small><sup>−3</sup></small> after a five-fold cross-validation. The performance of the supervised XGBoost model was upgraded by incorporating a semi-supervised algorithm to use large amounts of unlabeled data in the city and allow for a more accurate and extensive estimation of PM<small><sub>2.5</sub></small> for the period 2000–2022. This semi-supervised XGBoost model had an <em>R</em><small><sup>2</sup></small> of 0.97 and an RMSE of 8.3 μg m<small><sup>−3</sup></small> after a five-fold cross-validation. The results indicate that the estimated 24 hour mean PM<small><sub>2.5</sub></small> concentrations in the city are 2 to 4 times higher than the World Health Organization (WHO) 24 hour guidelines of 15 μg m<small><sup>−3</sup></small> in the rainy season and 2 to 22 times higher than the WHO 24 hour guideline in the dry season. The results also reveal that the average annual estimated PM<small><sub>2.5</sub></small> concentrations are 11 to 14 times higher than the WHO average annual guideline of 5 μg m<small><sup>−3</sup></small>. Finally, we find higher PM<small><sub>2.5</sub></small> concentrations in the city's center and industrial areas than in the other areas. The results indicate a need for future air pollution policy and mitigation in Burkina Faso to achieve desired health benefits such as reduced respiratory and cardiovascular problems, which will, in turn, lead to decreased PM<small><sub>2.5</sub></small> mortality rates.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 9","pages":" 1012-1025"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d4ea00057a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d4ea00057a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study estimates PM2.5 concentrations in Ouagadougou using satellite-based aerosol optical depth (AOD) and meteorological parameters such as temperature, precipitation, relative humidity, wind speed, and wind direction. First, Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Decision Tree (DT), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models were developed using the available labeled data (AOD and meteorological parameters with corresponding PM2.5 values) in the city. The XGBoost model outperformed all other models that were used, with a coefficient of determination (R2) of 0.87 and a root-mean-square error (RMSE) of 15.8 μg m−3 after a five-fold cross-validation. The performance of the supervised XGBoost model was upgraded by incorporating a semi-supervised algorithm to use large amounts of unlabeled data in the city and allow for a more accurate and extensive estimation of PM2.5 for the period 2000–2022. This semi-supervised XGBoost model had an R2 of 0.97 and an RMSE of 8.3 μg m−3 after a five-fold cross-validation. The results indicate that the estimated 24 hour mean PM2.5 concentrations in the city are 2 to 4 times higher than the World Health Organization (WHO) 24 hour guidelines of 15 μg m−3 in the rainy season and 2 to 22 times higher than the WHO 24 hour guideline in the dry season. The results also reveal that the average annual estimated PM2.5 concentrations are 11 to 14 times higher than the WHO average annual guideline of 5 μg m−3. Finally, we find higher PM2.5 concentrations in the city's center and industrial areas than in the other areas. The results indicate a need for future air pollution policy and mitigation in Burkina Faso to achieve desired health benefits such as reduced respiratory and cardiovascular problems, which will, in turn, lead to decreased PM2.5 mortality rates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用卫星气溶胶光学深度和气象参数估计瓦加杜古的细颗粒物空气污染状况†。
本研究利用基于卫星的气溶胶光学深度(AOD)和气象参数(如温度、降水、相对湿度、风速和风向)估算瓦加杜古的 PM2.5 浓度。首先,利用该市现有的标注数据(气溶胶光学深度和气象参数及相应的 PM2.5 值)开发了简单线性回归(SLR)、多元线性回归(MLR)、决策树(DT)、随机森林(RF)和极梯度提升(XGBoost)模型。经五倍交叉验证后,XGBoost 模型的判定系数 (R2) 为 0.87,均方根误差 (RMSE) 为 15.8 μg m-3,优于所有其他模型。通过采用半监督算法,监督 XGBoost 模型的性能得到了提升,可以使用城市中大量未标记的数据,对 2000-2022 年期间的 PM2.5 进行更准确、更广泛的估算。这种半监督 XGBoost 模型的 R2 为 0.97,经过五倍交叉验证后,RMSE 为 8.3 μg m-3。结果表明,该市估计的 24 小时 PM2.5 平均浓度在雨季比世界卫生组织(WHO)的 24 小时指导值 15 μg m-3 高 2 到 4 倍,在旱季比世界卫生组织的 24 小时指导值高 2 到 22 倍。结果还显示,PM2.5 的年平均估计浓度比世界卫生组织的年平均指导值 5 μg m-3 高出 11 到 14 倍。最后,我们发现市中心和工业区的 PM2.5 浓度高于其他地区。这些结果表明,布基纳法索需要制定未来的空气污染政策和减缓措施,以实现预期的健康效益,如减少呼吸道和心血管问题,进而降低 PM2.5 死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Back cover Real-time chemical characterization of primary and aged biomass burning aerosols derived from sub-Saharan African biomass fuels in smoldering fires. A framework for describing and classifying methane reporting requirements, emission sources, and monitoring methods† Does gas-phase sulfur dioxide remove films of atmosphere-extracted organic material from the aqueous aerosol air–water interface?† Enhanced detection of aromatic oxidation products using NO3 - chemical ionization mass spectrometry with limited nitric acid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1