Umair Hafeez Khan, Abdul Basit, Wasim Khan, Muhammad Adeel Khan Jadoon, Nauman Anwar Baig
{"title":"Cognitive dual coprime frequency diverse array MIMO radar network for target discrimination and main-lobe interference mitigation","authors":"Umair Hafeez Khan, Abdul Basit, Wasim Khan, Muhammad Adeel Khan Jadoon, Nauman Anwar Baig","doi":"10.1049/rsn2.12595","DOIUrl":null,"url":null,"abstract":"<p>The authors propose a novel dual coprime frequency diverse array (FDA) multiple input multiple output (DCFDA-MIMO) radar network design, empowered by cognitive capabilities, aimed at target discrimination and mitigation of interference present in the standalone radar systems. That is, the proposed DCFDA-MIMO design capitalises on the complementary advantages of FDAs for target discrimination and coprime arrays for enhanced resolution, resulting in superior performance. Additionally, the proposed DCFDA-MIMO network employs a 2D multiple signal classification algorithm to achieve high-resolution target localisation. By incorporating cognitive techniques based on the action-perception cycle, the proposed approach demonstrates notable improvements in multiple target detection and tracking accuracy with fewer number of antenna elements as compared to existing techniques. Furthermore, it enhances individual radar beamforming performance for interference suppression and true target detection without prior information.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 9","pages":"1584-1597"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12595","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12595","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The authors propose a novel dual coprime frequency diverse array (FDA) multiple input multiple output (DCFDA-MIMO) radar network design, empowered by cognitive capabilities, aimed at target discrimination and mitigation of interference present in the standalone radar systems. That is, the proposed DCFDA-MIMO design capitalises on the complementary advantages of FDAs for target discrimination and coprime arrays for enhanced resolution, resulting in superior performance. Additionally, the proposed DCFDA-MIMO network employs a 2D multiple signal classification algorithm to achieve high-resolution target localisation. By incorporating cognitive techniques based on the action-perception cycle, the proposed approach demonstrates notable improvements in multiple target detection and tracking accuracy with fewer number of antenna elements as compared to existing techniques. Furthermore, it enhances individual radar beamforming performance for interference suppression and true target detection without prior information.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.