Zone-Specific CSI Feedback for Massive MIMO: A Situation-Aware Deep Learning Approach

IF 5.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Wireless Communications Letters Pub Date : 2024-09-11 DOI:10.1109/LWC.2024.3457896
Yu Zhang;Ahmed Alkhateeb
{"title":"Zone-Specific CSI Feedback for Massive MIMO: A Situation-Aware Deep Learning Approach","authors":"Yu Zhang;Ahmed Alkhateeb","doi":"10.1109/LWC.2024.3457896","DOIUrl":null,"url":null,"abstract":"Massive MIMO basestations, operating with frequency-division duplexing (FDD), require the users to feedback their channel state information (CSI) in order to design the precoding matrices. In this letter, we introduce the concept of zone-specific CSI feedback. By partitioning the site space into multiple channel zones (areas or regions), the underlying channel distribution can be efficiently leveraged using deep learning models to reduce the CSI feedback. This concept leverages the implicit or explicit user position information to select the right zone-specific model and its parameters. To facilitate the evaluation of associated overhead, we introduce two novel metrics named model parameters transmission rate (MPTR) and model parameters update rate (MPUR). They jointly provide important insights and guidance for the system design and deployment. Simulation results show that noticeable gains could be achieved by the proposed framework. For example, using the large-scale Boston downtown scenario of DeepMIMO, the proposed zone-specific CSI feedback approach can on average achieve around 6dB NMSE gain compared to the other solutions, while keeping the same model complexity.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"13 12","pages":"3320-3324"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10677401/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Massive MIMO basestations, operating with frequency-division duplexing (FDD), require the users to feedback their channel state information (CSI) in order to design the precoding matrices. In this letter, we introduce the concept of zone-specific CSI feedback. By partitioning the site space into multiple channel zones (areas or regions), the underlying channel distribution can be efficiently leveraged using deep learning models to reduce the CSI feedback. This concept leverages the implicit or explicit user position information to select the right zone-specific model and its parameters. To facilitate the evaluation of associated overhead, we introduce two novel metrics named model parameters transmission rate (MPTR) and model parameters update rate (MPUR). They jointly provide important insights and guidance for the system design and deployment. Simulation results show that noticeable gains could be achieved by the proposed framework. For example, using the large-scale Boston downtown scenario of DeepMIMO, the proposed zone-specific CSI feedback approach can on average achieve around 6dB NMSE gain compared to the other solutions, while keeping the same model complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模多输入多输出(Massive MIMO)的特定区域 CSI 反馈:情境感知深度学习方法
采用频分双工(FDD)的大规模MIMO基站在设计预编码矩阵时需要用户反馈信道状态信息(CSI)。在这封信中,我们介绍了特定区域CSI反馈的概念。通过将站点空间划分为多个通道区域(区域或区域),可以使用深度学习模型有效地利用底层通道分布来减少CSI反馈。这个概念利用隐式或显式的用户位置信息来选择正确的特定于区域的模型及其参数。为了方便对相关开销的评估,我们引入了两个新的度量,即模型参数传输速率(MPTR)和模型参数更新速率(MPUR)。它们共同为系统设计和部署提供了重要的见解和指导。仿真结果表明,该框架可以获得显著的增益。例如,使用DeepMIMO的大规模波士顿市中心场景,与其他解决方案相比,所提出的特定区域CSI反馈方法可以在保持相同模型复杂性的情况下平均实现约6dB NMSE增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Wireless Communications Letters
IEEE Wireless Communications Letters Engineering-Electrical and Electronic Engineering
CiteScore
12.30
自引率
6.30%
发文量
481
期刊介绍: IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.
期刊最新文献
Chirp-Based Design for Robust Landing Systems Boundary-Aware Time–Frequency Sparse Coding for Low-Overhead IoT Time Series Analytics Hybrid Active-Passive RIS-Enhanced Physical Layer Security for MIMO Communications Conditional Diffusion Models for Signal Reconstruction after Interference Notching PP-RCR: A Position-Probability-Resource Cooperative Routing Algorithm for Air-to-Ground Integrated Mobile Ad Hoc Networks in Emergency Rescue Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1