Unveiling crystal orientation-dependent interface property in composite cathodes for solid-state batteries by in situ microscopic probe

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-11 DOI:10.1038/s41467-024-52226-4
Sunyoung Lee, Hayoung Park, Jae Young Kim, Jihoon Kim, Min-Ju Choi, Sangwook Han, Sewon Kim, Wonju Kim, Ho Won Jang, Jungwon Park, Kisuk Kang
{"title":"Unveiling crystal orientation-dependent interface property in composite cathodes for solid-state batteries by in situ microscopic probe","authors":"Sunyoung Lee, Hayoung Park, Jae Young Kim, Jihoon Kim, Min-Ju Choi, Sangwook Han, Sewon Kim, Wonju Kim, Ho Won Jang, Jungwon Park, Kisuk Kang","doi":"10.1038/s41467-024-52226-4","DOIUrl":null,"url":null,"abstract":"<p>A critical bottleneck toward all-solid-state batteries lies in how the solid(electrode)-solid(electrolyte) interface is fabricated and maintained over repeated cycles. Conventional composite cathodes, with crystallographically distinct electrode/electrolyte interfaces of random particles, create complexities with varying (electro)chemical compatibilities. To address this, we employ an epitaxial model system where the crystal orientations of cathode and solid electrolyte are precisely controlled, and probe the interfaces in real-time during co-sintering by in situ electron microscopy. The interfacial reaction is highly dependent on crystal orientation/alignment, especially the availability of open ion channels. Interfaces bearing open ion paths of NCM are more susceptible to interdiffusion, but stabilize with the early formed passivation layer. Conversely, interfaces with closed ion pathway exhibit stability at intermediate temperatures, but deteriorate rapidly at high temperature due to oxygen evolution, increasing interfacial resistance. The elucidation of these distinct interfacial behaviors emphasizes the need for decoupling collective interfacial properties to enable rational design in solid-state batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52226-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A critical bottleneck toward all-solid-state batteries lies in how the solid(electrode)-solid(electrolyte) interface is fabricated and maintained over repeated cycles. Conventional composite cathodes, with crystallographically distinct electrode/electrolyte interfaces of random particles, create complexities with varying (electro)chemical compatibilities. To address this, we employ an epitaxial model system where the crystal orientations of cathode and solid electrolyte are precisely controlled, and probe the interfaces in real-time during co-sintering by in situ electron microscopy. The interfacial reaction is highly dependent on crystal orientation/alignment, especially the availability of open ion channels. Interfaces bearing open ion paths of NCM are more susceptible to interdiffusion, but stabilize with the early formed passivation layer. Conversely, interfaces with closed ion pathway exhibit stability at intermediate temperatures, but deteriorate rapidly at high temperature due to oxygen evolution, increasing interfacial resistance. The elucidation of these distinct interfacial behaviors emphasizes the need for decoupling collective interfacial properties to enable rational design in solid-state batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过原位显微探针揭示固态电池复合阴极中晶体取向相关的界面特性
全固态电池的一个关键瓶颈在于如何制造固体(电极)-固体(电解质)界面,并在反复循环中保持这种界面。传统的复合阴极具有晶体学上不同的随机颗粒电极/电解质界面,这就造成了不同(电)化学相容性的复杂性。为了解决这个问题,我们采用了一种外延模型系统,在该系统中,阴极和固体电解质的晶体取向受到精确控制,并在共烧结过程中通过原位电子显微镜对界面进行实时探测。界面反应高度依赖于晶体取向/排列,尤其是开放离子通道的可用性。带有开放式离子通道的 NCM 接口更容易发生相互扩散,但在早期形成的钝化层的作用下会趋于稳定。相反,具有封闭离子通道的界面在中温条件下表现出稳定性,但在高温条件下会因氧进化而迅速恶化,从而增加界面电阻。对这些截然不同的界面行为的阐释强调了解耦集体界面特性的必要性,以实现固态电池的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
A metagenomic catalogue of the ruminant gut archaeome. Detecting biological motion signals in human and monkey superior colliculus: a subcortical-cortical pathway for biological motion perception. Enhanced production of 60Fe in massive stars. Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments. Ultrafast complete dechlorination enabled by ferrous oxide/graphene oxide catalytic membranes via nanoconfinement advanced reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1