SUMOylation modulates mitochondrial dynamics in an in vitro rotenone model of Parkinson's disease

IF 2.6 3区 医学 Q3 NEUROSCIENCES Molecular and Cellular Neuroscience Pub Date : 2024-09-10 DOI:10.1016/j.mcn.2024.103969
Ericks Sousa Soares , Letícia Yoshitome Queiroz , Ellen Gerhardt , Rui Daniel S. Prediger , Tiago Fleming Outeiro , Helena Iturvides Cimarosti
{"title":"SUMOylation modulates mitochondrial dynamics in an in vitro rotenone model of Parkinson's disease","authors":"Ericks Sousa Soares ,&nbsp;Letícia Yoshitome Queiroz ,&nbsp;Ellen Gerhardt ,&nbsp;Rui Daniel S. Prediger ,&nbsp;Tiago Fleming Outeiro ,&nbsp;Helena Iturvides Cimarosti","doi":"10.1016/j.mcn.2024.103969","DOIUrl":null,"url":null,"abstract":"<div><p>SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress. Considering the potential neuroprotective roles of SUMOylation, the aim of this study was to investigate the effects of SENP3 knockdown in H4 neuroglioma cells exposed to rotenone, an <em>in vitro</em> model of cytotoxicity that mimics dopaminergic loss in Parkinson's disease (PD). The current data show that SENP3 knockdown increases SUMO-2/3 conjugates, which is accompanied by reduced levels of the mitochondrial fission protein Drp1 and increased levels of the mitochondrial fusion protein OPA1. Of high interest, SENP3 knockdown prevented rotenone-induced superoxide production and cellular death. Taken together, these findings highlight the importance of SUMOylation in maintaining mitochondrial homeostasis and the neuroprotective potential of this modification in PD.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103969"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104474312400054X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress. Considering the potential neuroprotective roles of SUMOylation, the aim of this study was to investigate the effects of SENP3 knockdown in H4 neuroglioma cells exposed to rotenone, an in vitro model of cytotoxicity that mimics dopaminergic loss in Parkinson's disease (PD). The current data show that SENP3 knockdown increases SUMO-2/3 conjugates, which is accompanied by reduced levels of the mitochondrial fission protein Drp1 and increased levels of the mitochondrial fusion protein OPA1. Of high interest, SENP3 knockdown prevented rotenone-induced superoxide production and cellular death. Taken together, these findings highlight the importance of SUMOylation in maintaining mitochondrial homeostasis and the neuroprotective potential of this modification in PD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SUMOylation 在帕金森病的离体鱼藤酮模型中调节线粒体动力学
SUMOylation 是一种对各种生物过程至关重要的翻译后修饰。SUMO 蛋白通过三步酶解途径与目标底物结合,在特异性蛋白酶(即 SENPs)的作用下可快速逆转。研究表明,SUMOylation 在多种人类疾病中出现失调,包括神经退行性疾病,这些疾病的特征是神经元的逐渐丧失、线粒体功能障碍、自噬缺陷和氧化应激。考虑到 SUMOylation 的潜在神经保护作用,本研究旨在调查 SENP3 敲除对暴露于鱼藤酮的 H4 神经胶质瘤细胞的影响,鱼藤酮是一种模拟帕金森病(PD)中多巴胺能丧失的体外细胞毒性模型。目前的数据显示,SENP3敲除会增加SUMO-2/3共轭物,同时线粒体裂变蛋白Drp1水平降低,线粒体融合蛋白OPA1水平升高。更令人感兴趣的是,SENP3 基因敲除可防止鱼藤酮诱导的超氧化物生成和细胞死亡。综上所述,这些发现突出了 SUMOylation 在维持线粒体稳态中的重要性,以及这种修饰在帕金森病中的神经保护潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
65
审稿时长
37 days
期刊介绍: Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.
期刊最新文献
Potential key pathophysiological participant and treatment target in autism spectrum disorder: Microglia Sphingosine-1-phosphate receptor 3 promotes neuronal apoptosis via the TNF-α/caspase-3 signaling pathway after acute intracerebral hemorrhage The mRNA expression profile of glycine receptor subunits alpha 1, alpha 2, alpha 4 and beta in female and male mice. TAT-PPA1 protects against oxidative stress-induced loss of dopaminergic neurons Inhibition of phosphodiesterase 10A mitigates neuronal injury by modulating apoptotic pathways in cold-induced traumatic brain injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1