{"title":"Optimization design and key-term separation identification of parallel six-dimensional pose sensor with high sensitivity and high precision","authors":"Jianfeng Lin , Chenkun Qi , Yan Hu , Feng Gao","doi":"10.1016/j.mechmachtheory.2024.105716","DOIUrl":null,"url":null,"abstract":"<div><p>The integrated bearing-positioning parallel manipulator is an important mean for ground testing of space optical telescope before being launched into space. To ensure positioning accuracy, the manipulator requires a pose sensor for the end-effector measurement with six degrees of freedom (DOF), real-time, high-precision, and operation in a vacuum environment. However, it is challenging for the current pose sensor to simultaneously meet all these requirements. In this paper, a novel concept of six-dimensional pose sensor based on parallel mechanism is proposed. A new mechanism design approach is presented to achieve the large measurement range, real-time measurement performance, and high accuracy measurement based on performance atlas. First, the G<sub>F</sub> sets synthesis is developed to optimize the configuration of pose sensor. Next, two new design indicators are proposed to evaluate the real-time and high accuracy performance. Mechanism parameters are optimized by combining with mechanism singularity analysis. To guarantee high measurement accuracy, a key-term separation identification method with double neural networks is presented. Experiments on 6-UPS pose sensor demonstrate the effectiveness of the proposed mechanism design and key-term identification approach.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105716"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001435","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The integrated bearing-positioning parallel manipulator is an important mean for ground testing of space optical telescope before being launched into space. To ensure positioning accuracy, the manipulator requires a pose sensor for the end-effector measurement with six degrees of freedom (DOF), real-time, high-precision, and operation in a vacuum environment. However, it is challenging for the current pose sensor to simultaneously meet all these requirements. In this paper, a novel concept of six-dimensional pose sensor based on parallel mechanism is proposed. A new mechanism design approach is presented to achieve the large measurement range, real-time measurement performance, and high accuracy measurement based on performance atlas. First, the GF sets synthesis is developed to optimize the configuration of pose sensor. Next, two new design indicators are proposed to evaluate the real-time and high accuracy performance. Mechanism parameters are optimized by combining with mechanism singularity analysis. To guarantee high measurement accuracy, a key-term separation identification method with double neural networks is presented. Experiments on 6-UPS pose sensor demonstrate the effectiveness of the proposed mechanism design and key-term identification approach.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry