Nanoarchitectonics of MIL-101(Fe)/g-C3N4 S-Scheme heterojunction for photocatalytic nitrogen fixation: Mechanisms and performance

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Surfaces and Interfaces Pub Date : 2024-09-08 DOI:10.1016/j.surfin.2024.105083
{"title":"Nanoarchitectonics of MIL-101(Fe)/g-C3N4 S-Scheme heterojunction for photocatalytic nitrogen fixation: Mechanisms and performance","authors":"","doi":"10.1016/j.surfin.2024.105083","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, there has been a growing interest in the fundamental understanding of the mechanism of how MIL-101(Fe)/g-C<sub>3</sub>N<sub>4</sub> heterojunctions facilitate the occurrence of photocatalytic nitrogen fixation reactions, especially the electron transfer mechanism has attained increasing attention in photocatalysis. Herein, we implemented a \"triple win scenario\" strategy to fabricate the S-scheme MIL-101(Fe)/g-C<sub>3</sub>N<sub>4</sub> heterojunction through a straightforward solvothermal process. The MC-6 heterojunction minimizes the recombination of photogenerated carriers, enhances light utilization efficiency, and activates the N≡N bond, thus boosting photocatalytic nitrogen fixation efficiency. The transition metal iron activates the N≡N bond, while S-scheme heterojunctions reduce the photogenerated carrier recombination. In addition, the decrease in band gap (E<sub>g</sub>) leads to an increase in visible light utilization efficiency. ISIXPS proved the mechanism of interelectron transfer of MIL-101(Fe)/g-C<sub>3</sub>N<sub>4</sub> heterojunction under illumination. Upon the creation of the heterojunction, electrons migrate from g-C<sub>3</sub>N<sub>4</sub> to MIL-101(Fe), establishing an inherent electric field due to the disparate Fermi levels between the two materials. The electrons (e<sup>-</sup>) on the g-C<sub>3</sub>N<sub>4</sub> CB with a more negative reduction potential and the holes (<em>h</em><sup>+</sup>) on the MIL-101(Fe) VB are retained, which increased the redox capacity to a great extent required for the reduction of N<sub>2</sub> to NH<sub>3</sub>. The ammonia production efficiency of MC-6 photocatalyst was 160 µmol g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup>, representing an 8-fold and 2.8-fold improvement over pristine g-C<sub>3</sub>N<sub>4</sub> (20 µmol g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup>) and MIL-101(Fe) (57 µmol g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup>), respectively.</p></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012392","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there has been a growing interest in the fundamental understanding of the mechanism of how MIL-101(Fe)/g-C3N4 heterojunctions facilitate the occurrence of photocatalytic nitrogen fixation reactions, especially the electron transfer mechanism has attained increasing attention in photocatalysis. Herein, we implemented a "triple win scenario" strategy to fabricate the S-scheme MIL-101(Fe)/g-C3N4 heterojunction through a straightforward solvothermal process. The MC-6 heterojunction minimizes the recombination of photogenerated carriers, enhances light utilization efficiency, and activates the N≡N bond, thus boosting photocatalytic nitrogen fixation efficiency. The transition metal iron activates the N≡N bond, while S-scheme heterojunctions reduce the photogenerated carrier recombination. In addition, the decrease in band gap (Eg) leads to an increase in visible light utilization efficiency. ISIXPS proved the mechanism of interelectron transfer of MIL-101(Fe)/g-C3N4 heterojunction under illumination. Upon the creation of the heterojunction, electrons migrate from g-C3N4 to MIL-101(Fe), establishing an inherent electric field due to the disparate Fermi levels between the two materials. The electrons (e-) on the g-C3N4 CB with a more negative reduction potential and the holes (h+) on the MIL-101(Fe) VB are retained, which increased the redox capacity to a great extent required for the reduction of N2 to NH3. The ammonia production efficiency of MC-6 photocatalyst was 160 µmol gcat-1 h-1, representing an 8-fold and 2.8-fold improvement over pristine g-C3N4 (20 µmol gcat-1 h-1) and MIL-101(Fe) (57 µmol gcat-1 h-1), respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光催化固氮的 MIL-101(Fe)/g-C3N4 S-Scheme 异质结的纳米结构:机理与性能
近年来,人们对 MIL-101(Fe)/g-C3N4异质结如何促进光催化固氮反应发生的机理的基本认识越来越感兴趣,尤其是电子传递机理在光催化中越来越受到关注。在此,我们采用 "三赢方案 "策略,通过简单的溶热工艺制备了 S 型 MIL-101(Fe)/g-C3N4异质结。MC-6 异质结最大程度地减少了光生载流子的重组,提高了光利用效率,并激活了 N≡N 键,从而提高了光催化固氮效率。过渡金属铁激活了 N≡N 键,而 S 型异质结则减少了光生载流子的重组。此外,带隙(Eg)的减小导致了可见光利用效率的提高。ISIXPS 证明了 MIL-101(Fe)/g-C3N4异质结在光照下的电子间转移机制。异质结形成后,电子从 g-C3N4 迁移到 MIL-101(Fe),由于两种材料的费米级不同,从而形成了固有电场。g-C3N4 CB 上的电子(e-)具有更负的还原电位,而 MIL-101(Fe)VB 上的空穴(h+)被保留下来,这在很大程度上提高了将 N2 还原成 NH3 所需的氧化还原能力。MC-6 光催化剂的氨生产效率为 160 µmol gcat-1 h-1,分别比原始 g-C3N4 (20 µmol gcat-1 h-1)和 MIL-101(Fe)(57 µmol gcat-1 h-1)提高了 8 倍和 2.8 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
期刊最新文献
Assembly of artificial photo-enzyme coupling nanoreactor for boosting photodegradation of trace bisphenol A pollutant in water Protein assay and immunoassay based on nematic thermotropic and lyotropic liquid crystals quantitated by haze measurement Microstructural design of crown nanopores in graphene membrane for efficient desalination process Adsorption ability of sugar scum as industrial waste for crystal violet elimination: Experimental and advanced statistical physics modeling Investigation of magnetocapacitance and magnetoconductivity in single-phase Y-Type hexaferrite Ba2Co2Fe12O22 nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1