Zeynep Ayhan Kilinc, Ece Guran Schmidt, Klaus Werner Schmidt
{"title":"Computation of tight bounds for the worst-case end-to-end delay on Avionics Full-Duplex Switched Ethernet","authors":"Zeynep Ayhan Kilinc, Ece Guran Schmidt, Klaus Werner Schmidt","doi":"10.1016/j.sysarc.2024.103278","DOIUrl":null,"url":null,"abstract":"<div><p>Avionics Full-Duplex Switched Ethernet (AFDX) is a fault-tolerant real-time communication bus for safety–critical applications in aircraft. AFDX configures communication channels, denoted as virtual links (VLs), ensuring bounded message delays through traffic shaping at both end-systems and switches. Effective AFDX network design necessitates computing the worst-case end-to-end delay of time-critical VLs to meet specified message deadlines. This paper presents a new method for calculating tight bounds on the worst-case end-to-end delay for each VL in an AFDX network. We introduce the new notion of an extended uninterrupted transmission interval, which is the prerequisite for computing the worst-case queuing delay at switches. Adding up these queuing delays along the path of each VL between end-systems yields a tight upper bound on the worst-case end-to-end delay. The correctness of our results is formally proved, and comprehensive simulation experiments on different example networks confirm the tightness of our bound. These simulations also demonstrate the superior performance of our method compared to existing approaches that offer more pessimistic as well as optimistic results.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"156 ","pages":"Article 103278"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124002157","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Avionics Full-Duplex Switched Ethernet (AFDX) is a fault-tolerant real-time communication bus for safety–critical applications in aircraft. AFDX configures communication channels, denoted as virtual links (VLs), ensuring bounded message delays through traffic shaping at both end-systems and switches. Effective AFDX network design necessitates computing the worst-case end-to-end delay of time-critical VLs to meet specified message deadlines. This paper presents a new method for calculating tight bounds on the worst-case end-to-end delay for each VL in an AFDX network. We introduce the new notion of an extended uninterrupted transmission interval, which is the prerequisite for computing the worst-case queuing delay at switches. Adding up these queuing delays along the path of each VL between end-systems yields a tight upper bound on the worst-case end-to-end delay. The correctness of our results is formally proved, and comprehensive simulation experiments on different example networks confirm the tightness of our bound. These simulations also demonstrate the superior performance of our method compared to existing approaches that offer more pessimistic as well as optimistic results.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.