Half-life determination of 72Ga

IF 1.6 3区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR Applied Radiation and Isotopes Pub Date : 2024-09-10 DOI:10.1016/j.apradiso.2024.111517
{"title":"Half-life determination of 72Ga","authors":"","doi":"10.1016/j.apradiso.2024.111517","DOIUrl":null,"url":null,"abstract":"<div><p>Gallium-72 is an important Comprehensive Nuclear-Test-Ban Treaty relevant radionuclide that arouses significant interest. However, the reported half-lives of <sup>72</sup>Ga are discrepant. In the current work, three solution samples of different concentrations were prepared and sequentially measured by a high-purity Germanium (HPGe) spectrometer. The count rates as a function of time of the 834.1 keV and 630.0 keV γ-lines were followed for the half-life determination. Through mass normalization, the datasets of three samples are combined and the statistical uncertainties are reduced. Half-life values were derived from datasets of each sample and mass normalization and corresponding complete uncertainty budgets are presented. The final half-life determined for <sup>72</sup>Ga is 13.94 (2) h, showing a deviation of 1.12% from the last nuclear data sheets (NDS) recommended value. Comparing with the values of previous publications, the result from this work is smaller than most results and consistent with the latest value which has one large uncertainty. A recommended value of 14.07 (3) h is estimated using the power-moderated mean (PMM) method.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804324003452","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Gallium-72 is an important Comprehensive Nuclear-Test-Ban Treaty relevant radionuclide that arouses significant interest. However, the reported half-lives of 72Ga are discrepant. In the current work, three solution samples of different concentrations were prepared and sequentially measured by a high-purity Germanium (HPGe) spectrometer. The count rates as a function of time of the 834.1 keV and 630.0 keV γ-lines were followed for the half-life determination. Through mass normalization, the datasets of three samples are combined and the statistical uncertainties are reduced. Half-life values were derived from datasets of each sample and mass normalization and corresponding complete uncertainty budgets are presented. The final half-life determined for 72Ga is 13.94 (2) h, showing a deviation of 1.12% from the last nuclear data sheets (NDS) recommended value. Comparing with the values of previous publications, the result from this work is smaller than most results and consistent with the latest value which has one large uncertainty. A recommended value of 14.07 (3) h is estimated using the power-moderated mean (PMM) method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
72Ga 的半衰期测定
镓-72 是一种与《全面禁止核试验条约》相关的重要放射性核素,引起了人们的极大兴趣。然而,报告的 72Ga 半衰期并不一致。在本次研究中,我们制备了三种不同浓度的溶液样品,并利用高纯锗(HPGe)光谱仪对其进行了连续测量。在测定半衰期时,对 834.1 千伏和 630.0 千伏 γ 线的计数率随时间的变化进行了跟踪。通过质量归一化,三个样本的数据集被合并在一起,从而减少了统计不确定性。根据每个样品的数据集和质量归一化得出半衰期值,并给出了相应的完整不确定性预算。72Ga 的最终半衰期为 13.94 (2) h,与最新的核数据表(NDS)推荐值相差 1.12%。与以前发表的数值相比,这项工作的结果比大多数结果都要小,并且与最新数值一致,而最新数值有很大的不确定性。使用功率调制平均法(PMM)估算出的建议值为 14.07 (3) h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Radiation and Isotopes
Applied Radiation and Isotopes 工程技术-核科学技术
CiteScore
3.00
自引率
12.50%
发文量
406
审稿时长
13.5 months
期刊介绍: Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.
期刊最新文献
Editorial Board Characterizing field sizes of the linear accelerator: Monte Carlo simulation in 6 MV SRS mode with GEANT4/GATE Assessment of radioactive nuclides and heavy metals in soil and drink water in Lahij city, Yemen 111Ag phantom images with Cerenkov Luminescence Imaging and digital autoradiography within the ISOLPHARM project Cross-sections for 43Sc, 44mSc, and 44gSc from two heavy ion reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1