Estimating Channels With Hundreds of Sub-Paths for MU-MIMO Uplink: A Structured High-Rank Tensor Approach

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-09-03 DOI:10.1109/LSP.2024.3453655
Panqi Chen;Lei Cheng
{"title":"Estimating Channels With Hundreds of Sub-Paths for MU-MIMO Uplink: A Structured High-Rank Tensor Approach","authors":"Panqi Chen;Lei Cheng","doi":"10.1109/LSP.2024.3453655","DOIUrl":null,"url":null,"abstract":"This letter introduces a structured high-rank tensor approach for estimating sub-6G uplink channels in multi-user multiple-input and multiple-output (MU-MIMO) systems. To tackle the difficulty of channel estimation in sub-6G bands with hundreds of sub-paths, our approach fully exploits the physical structure of channel and establishes the link between sub-6G channel model and a high-rank four-dimensional (4D) tensor Canonical Polyadic Decomposition (CPD) with three factor matrices being Vandermonde-constrained. Accordingly, a stronger uniqueness property is derived in this work. This model supports an efficient one-pass algorithm for estimating sub-path parameters, which ensures plug-in compatibility with the widely-used baseline. Our method performs much better than the state-of-the-art tensor-based techniques on the simulations adhering to the 3GPP-R18 5G protocols.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10663962/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces a structured high-rank tensor approach for estimating sub-6G uplink channels in multi-user multiple-input and multiple-output (MU-MIMO) systems. To tackle the difficulty of channel estimation in sub-6G bands with hundreds of sub-paths, our approach fully exploits the physical structure of channel and establishes the link between sub-6G channel model and a high-rank four-dimensional (4D) tensor Canonical Polyadic Decomposition (CPD) with three factor matrices being Vandermonde-constrained. Accordingly, a stronger uniqueness property is derived in this work. This model supports an efficient one-pass algorithm for estimating sub-path parameters, which ensures plug-in compatibility with the widely-used baseline. Our method performs much better than the state-of-the-art tensor-based techniques on the simulations adhering to the 3GPP-R18 5G protocols.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为 MU-MIMO 上行链路估计具有数百条子路径的信道:结构化高张量方法
本文介绍了一种结构化高阶张量方法,用于估计多用户多输入多输出(MU-MIMO)系统中的6G以下上行链路信道。为了解决在具有数百条子路径的亚 6G 频段中估计信道的难题,我们的方法充分利用了信道的物理结构,并在亚 6G 信道模型和高阶四维(4D)张量佳能多向分解(CPD)之间建立了联系,其中三个因子矩阵是范德蒙德约束的。因此,这项工作推导出了一个更强的唯一性属性。该模型支持估算子路径参数的高效单程算法,确保了与广泛使用的基线插件的兼容性。在符合 3GPP-R18 5G 协议的仿真中,我们的方法比最先进的基于张量的技术表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
KFA: Keyword Feature Augmentation for Open Set Keyword Spotting RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes Audio Mamba: Bidirectional State Space Model for Audio Representation Learning System-Informed Neural Network for Frequency Detection Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1