Ming Tao;Xueqiang Li;Jie Feng;Dapeng Lan;Jun Du;Celimuge Wu
{"title":"Multi-Agent Cooperation for Computing Power Scheduling in UAVs Empowered Aerial Computing Systems","authors":"Ming Tao;Xueqiang Li;Jie Feng;Dapeng Lan;Jun Du;Celimuge Wu","doi":"10.1109/JSAC.2024.3459035","DOIUrl":null,"url":null,"abstract":"In the paradigm of ubiquitous edge computing, with those advantages, e.g., high mobility, fast response, flexibility and controllability, and low cost of use, Unmanned Aerial Vehicles (UAVs) could be used not only as relays to assist with data collection, but also as computing power nodes to process uncomplicated computational workloads from ground users. Especially, UAVs could be employed to provide alternative computing power resources in field, lake, post-disaster and other complex regional environments. In this paper, to address the issue of computing power scheduling in UAVs empowered aerial computing systems, a scenario where multiple UAVs from the same departure station cooperatively fly over hovering points and achieve the data collection and computation in a decentralized manner is investigated. Nevertheless, due to limited onboard battery capacities of UAVs and diverse service requests of ground users, it is necessary to optimize energy efficiency and service fairness for improving mission execution capabilities of UAVs and the quality of service (QoS) experienced by ground users, and a joint optimization problem of energy efficiency and service fairness is formulated. Through considering complex coupling associations among the departure station, flight paths and hovering points of UAVs, the problem is investigated from the trajectory planning of UAVs and the location planning for both the departure station and hovering points. Proving investigations to be Markov decision processes (MDP), multi-agent cooperation approaches are proposed as promising solutions, and simulation results have been shown to demonstrate that the performance achieved by the proposal outperforms that achieved by schemes commonly used in literatures.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 12","pages":"3521-3535"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679199/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the paradigm of ubiquitous edge computing, with those advantages, e.g., high mobility, fast response, flexibility and controllability, and low cost of use, Unmanned Aerial Vehicles (UAVs) could be used not only as relays to assist with data collection, but also as computing power nodes to process uncomplicated computational workloads from ground users. Especially, UAVs could be employed to provide alternative computing power resources in field, lake, post-disaster and other complex regional environments. In this paper, to address the issue of computing power scheduling in UAVs empowered aerial computing systems, a scenario where multiple UAVs from the same departure station cooperatively fly over hovering points and achieve the data collection and computation in a decentralized manner is investigated. Nevertheless, due to limited onboard battery capacities of UAVs and diverse service requests of ground users, it is necessary to optimize energy efficiency and service fairness for improving mission execution capabilities of UAVs and the quality of service (QoS) experienced by ground users, and a joint optimization problem of energy efficiency and service fairness is formulated. Through considering complex coupling associations among the departure station, flight paths and hovering points of UAVs, the problem is investigated from the trajectory planning of UAVs and the location planning for both the departure station and hovering points. Proving investigations to be Markov decision processes (MDP), multi-agent cooperation approaches are proposed as promising solutions, and simulation results have been shown to demonstrate that the performance achieved by the proposal outperforms that achieved by schemes commonly used in literatures.