{"title":"Co-Optimizing Power-Transportation Networks With Circulating Loads and Particle-Like Stochastic Motion","authors":"Yu Weng;Jiahang Xie;Lahanda Purage Mohasha Isuru Sampath;Ruaridh Macdonald;Petr Vorobev;Hung Dinh Nguyen","doi":"10.1109/TSG.2024.3459653","DOIUrl":null,"url":null,"abstract":"Coupling power-transportation systems may enhance the resilience of power grids by engaging energy-carrying mobile entities such as electric vehicles (EVs), truck-mounted energy storage systems, and Data Centers (DCs), which can shift the computing loads among their network. In practice, the co-optimization problem for power-transportation systems can be overly complicated due to a great deal of uncertainty and many decision variables rooted in the EV population and mobile energy storage. Another challenge is the heterogeneity in terms of size and supporting capability due to various types of such mobile entities. This work aims to facilitate power-transportation co-optimization by proposing and formalizing the concept of Circulating Loads (CirLoads) to generalize these spatial-temporal dispatchable entities. With the new concept, the stochastic process of CirLoads’ movement is introduced using Brownian particles for the first time. Such novel particle motion-based modeling for EVs can reflect their stochastic behaviors over time without requiring exact data of EVs. The distributions of CirLoads are further aggregated with Gaussian Mixture Models to reduce the dimensions. Based on this aggregated model, a co-optimization framework is proposed to coordinate the bulk of EVs while respecting data privacy between transportation and power systems. Simulation results demonstrate the effectiveness of the proposed framework.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 1","pages":"640-651"},"PeriodicalIF":9.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679187/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Coupling power-transportation systems may enhance the resilience of power grids by engaging energy-carrying mobile entities such as electric vehicles (EVs), truck-mounted energy storage systems, and Data Centers (DCs), which can shift the computing loads among their network. In practice, the co-optimization problem for power-transportation systems can be overly complicated due to a great deal of uncertainty and many decision variables rooted in the EV population and mobile energy storage. Another challenge is the heterogeneity in terms of size and supporting capability due to various types of such mobile entities. This work aims to facilitate power-transportation co-optimization by proposing and formalizing the concept of Circulating Loads (CirLoads) to generalize these spatial-temporal dispatchable entities. With the new concept, the stochastic process of CirLoads’ movement is introduced using Brownian particles for the first time. Such novel particle motion-based modeling for EVs can reflect their stochastic behaviors over time without requiring exact data of EVs. The distributions of CirLoads are further aggregated with Gaussian Mixture Models to reduce the dimensions. Based on this aggregated model, a co-optimization framework is proposed to coordinate the bulk of EVs while respecting data privacy between transportation and power systems. Simulation results demonstrate the effectiveness of the proposed framework.
期刊介绍:
The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.