A novel eco-friendly approach of combining vermicompost and effective microorganisms sustains wheat (Triticum aestivum L.) drought tolerance by modulating photosynthetic performance and nutrient acquisition

IF 2.4 4区 生物学 Q2 PLANT SCIENCES Acta Physiologiae Plantarum Pub Date : 2024-09-02 DOI:10.1007/s11738-024-03698-w
Neveen B. Talaat, Sameh A. M. Abdel-Salam
{"title":"A novel eco-friendly approach of combining vermicompost and effective microorganisms sustains wheat (Triticum aestivum L.) drought tolerance by modulating photosynthetic performance and nutrient acquisition","authors":"Neveen B. Talaat, Sameh A. M. Abdel-Salam","doi":"10.1007/s11738-024-03698-w","DOIUrl":null,"url":null,"abstract":"<p>The most significant threat to global food security is water scarcity. Despite the fact that vermicompost (an effective organic fertilizer rich in humic substances, macro- and micro-nutrients, earthworm excretions, beneficial soil microbes, plant growth hormones, enzymes) and effective microorganisms (EM; photosynthetic bacteria, lactic acid bacteria, yeasts, actinomycetes, fermenting fungi) have been recognized as powerful strategies for alleviating environmental stresses, their combined effect has not been studied. Herein, as a first investigation, we aimed to enhance wheat’s drought tolerance using an eco-friendly approach that combined vermicompost and EM. The study employed twelve treatments in a completely randomized design. The treatments included control, as well as single and combined applications of vermicompost and EM at three different irrigation levels (100%, 70%, and 30% of field capacity). Vermicompost and EM, applied singly or in combination, ameliorated drought-induced reduction in wheat growth and productivity by elevating photosynthetic pigment content, photochemical processes, Calvin cycle enzyme activity, net photosynthetic rate, transpiration rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry, actual photochemical efficiency of PSII, electron transport rate, photochemical quenching coefficient, and effective quantum yield of PSII photochemistry. Additionally, adding vermicompost and/or EM improved wheat drought tolerance by increasing nutrient (nitrogen, phosphorus, potassium, iron, zinc, copper) acquisition, roots’ ATP content, H<sup>+</sup>-pump activity, and membrane stability index while lowering hydrogen peroxide content, lipid peroxidation, and electrolyte leakage. The new evidence demonstrates that combining vermicompost with EM sustains wheat drought tolerance by regulating photosynthetic efficiency, nutrient acquisition, root H<sup>+</sup>-pump activity, and membrane stability. Overall, utilizing vermicompost/EM is a novel approach to improving plant physiological responses and overcoming drought-related challenges.</p>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11738-024-03698-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The most significant threat to global food security is water scarcity. Despite the fact that vermicompost (an effective organic fertilizer rich in humic substances, macro- and micro-nutrients, earthworm excretions, beneficial soil microbes, plant growth hormones, enzymes) and effective microorganisms (EM; photosynthetic bacteria, lactic acid bacteria, yeasts, actinomycetes, fermenting fungi) have been recognized as powerful strategies for alleviating environmental stresses, their combined effect has not been studied. Herein, as a first investigation, we aimed to enhance wheat’s drought tolerance using an eco-friendly approach that combined vermicompost and EM. The study employed twelve treatments in a completely randomized design. The treatments included control, as well as single and combined applications of vermicompost and EM at three different irrigation levels (100%, 70%, and 30% of field capacity). Vermicompost and EM, applied singly or in combination, ameliorated drought-induced reduction in wheat growth and productivity by elevating photosynthetic pigment content, photochemical processes, Calvin cycle enzyme activity, net photosynthetic rate, transpiration rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry, actual photochemical efficiency of PSII, electron transport rate, photochemical quenching coefficient, and effective quantum yield of PSII photochemistry. Additionally, adding vermicompost and/or EM improved wheat drought tolerance by increasing nutrient (nitrogen, phosphorus, potassium, iron, zinc, copper) acquisition, roots’ ATP content, H+-pump activity, and membrane stability index while lowering hydrogen peroxide content, lipid peroxidation, and electrolyte leakage. The new evidence demonstrates that combining vermicompost with EM sustains wheat drought tolerance by regulating photosynthetic efficiency, nutrient acquisition, root H+-pump activity, and membrane stability. Overall, utilizing vermicompost/EM is a novel approach to improving plant physiological responses and overcoming drought-related challenges.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将蛭肥和有效微生物相结合的新型生态友好方法通过调节光合作用和养分获取来维持小麦(Triticum aestivum L.)的耐旱性
全球粮食安全面临的最大威胁是缺水。尽管蚯蚓堆肥(一种有效的有机肥料,富含腐殖质、宏量和微量营养元素、蚯蚓排泄物、有益的土壤微生物、植物生长激素和酶)和有效微生物(EM;光合细菌、乳酸菌、酵母菌、放线菌、发酵真菌)已被认为是缓解环境压力的有力策略,但它们的综合效果尚未得到研究。在此,作为首次调查,我们旨在利用蛭石堆肥和 EM 相结合的生态友好型方法提高小麦的抗旱能力。研究采用了完全随机设计的十二个处理。处理包括对照,以及在三种不同灌溉水平(100%、70% 和 30% 的田间灌溉量)下单次或联合施用蛭石堆肥和 EM。单独或联合施用蛭石堆肥和 EM 可提高光合色素含量、光化学过程、卡尔文循环酶活性、净光合速率、蒸腾速率、气孔导度、PSII 光化学的最大量子效率、PSII 的实际光化学效率、电子传递速率、光化学淬灭系数和 PSII 光化学的有效量子产率,从而改善干旱引起的小麦生长和产量下降。此外,添加蛭石堆肥和/或 EM 还能提高养分(氮、磷、钾、铁、锌、铜)获取量、根部 ATP 含量、H+-泵活性和膜稳定性指数,同时降低过氧化氢含量、脂质过氧化和电解质渗漏,从而提高小麦的耐旱性。新的证据表明,将蛭肥与 EM 结合使用,可通过调节光合效率、养分获取、根部 H+ 泵活性和膜稳定性来维持小麦的耐旱性。总之,利用蛭石堆肥/EM 是改善植物生理反应和克服干旱相关挑战的一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Physiologiae Plantarum
Acta Physiologiae Plantarum 生物-植物科学
CiteScore
5.10
自引率
3.80%
发文量
125
审稿时长
3.1 months
期刊介绍: Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry. The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.
期刊最新文献
Nucleotide metabolism in common bean pods during seed filling phase reveals the essential role of seed coats Genetic control of important yield attributing characters predicted through machine learning in segregating generations of interspecific crosses of tomato (Solanum lycopersicum L.) A novel eco-friendly approach of combining vermicompost and effective microorganisms sustains wheat (Triticum aestivum L.) drought tolerance by modulating photosynthetic performance and nutrient acquisition Scanning electron microscopy reveals contrasting effects of liquid nitrogen on seeds of legumes Neonotonia wightii, Phaseolus vulgaris and Tamarindus indica Variation in nonstructural carbohydrates and antioxidant metabolism in wheat leaf and spike under changing CO2 and nitrogen supply
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1