Shadows and weak gravitational lensing for black holes within Einstein-Maxwell-scalar theory*

IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR 中国物理C Pub Date : 2024-08-31 DOI:10.1088/1674-1137/ad5a70
Ahmad Al-Badawi, Mirzabek Alloqulov, Sanjar Shaymatov and Bobomurat Ahmedov
{"title":"Shadows and weak gravitational lensing for black holes within Einstein-Maxwell-scalar theory*","authors":"Ahmad Al-Badawi, Mirzabek Alloqulov, Sanjar Shaymatov and Bobomurat Ahmedov","doi":"10.1088/1674-1137/ad5a70","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the optical properties of charged black holes within the Einstein-Maxwell-scalar (EMS) theory. We evaluated the shadow cast by these black holes and obtained analytical solutions for both the radius of the photon sphere and that of the shadow. We observed that black hole parameters γ and β both influence the shadow of black holes. We also found that the photon sphere and shadow radius increase as a consequence of the presence of the parameter γ. Interestingly, the shadow radius decreases first and then remains unchanged owing to the impact of the parameter β. Finally, we analyzed the weak gravitational lensing and total magnification of lensed images around black holes. We found that the charge of the black holes and the parameter β both have a significant impact, reducing the deflection angle. Similarly, the same behavior for the total magnification was observed, also as a result of the effect of the charge of the black holes and the parameter β.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad5a70","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the optical properties of charged black holes within the Einstein-Maxwell-scalar (EMS) theory. We evaluated the shadow cast by these black holes and obtained analytical solutions for both the radius of the photon sphere and that of the shadow. We observed that black hole parameters γ and β both influence the shadow of black holes. We also found that the photon sphere and shadow radius increase as a consequence of the presence of the parameter γ. Interestingly, the shadow radius decreases first and then remains unchanged owing to the impact of the parameter β. Finally, we analyzed the weak gravitational lensing and total magnification of lensed images around black holes. We found that the charge of the black holes and the parameter β both have a significant impact, reducing the deflection angle. Similarly, the same behavior for the total magnification was observed, also as a result of the effect of the charge of the black holes and the parameter β.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
爱因斯坦-麦克斯韦-标量理论中黑洞的阴影和弱引力透镜*
在这项研究中,我们研究了爱因斯坦-麦克斯韦-标量(EMS)理论中带电黑洞的光学特性。我们评估了这些黑洞投下的阴影,并得到了光子球半径和阴影半径的解析解。我们观察到黑洞参数γ和β都会影响黑洞的阴影。有趣的是,由于参数 β 的影响,阴影半径先减小后保持不变。最后,我们分析了黑洞周围的弱引力透镜和透镜图像的总放大率。我们发现,黑洞的电荷和参数 β 都有很大影响,会减小偏转角。同样,在黑洞电荷和参数 β 的影响下,也观察到了总放大率的相同行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国物理C
中国物理C 物理-物理:核物理
CiteScore
6.50
自引率
8.30%
发文量
8976
审稿时长
1.3 months
期刊介绍: Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of: Particle physics; Nuclear physics; Particle and nuclear astrophysics; Cosmology; Accelerator physics. The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication. The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal. The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.
期刊最新文献
CP violation of baryon decays with N π rescatterings* * Supported in part by the Natural Science Foundation of China (12335003), and the Fundamental Research Funds for the Central Universities (lzujbky-2024-oy02, lzujbky-2023-it12) Testing Bell inequality through at CEPC* * Tong Li is Supported by the National Natural Science Foundation of China (12375096, 12035008, 11975129), and "the Fundamental Research Funds for the Central Universities", Nankai University (63196013). Kai Ma was supported by the Natural Science Basic Research Program of Shaanxi Province, China (2023-JC-YB-041) and the Innovation Capability Support Program of Shaanxi Province, China (2021KJXX-47) Probing inelastic signatures of dark matter detection via polarized nucleus* * Supported by the National Natural Science Foundation of China (12275232, 12005180), the Natural Science Foundation of Shandong Province, China (ZR2020QA083) and the Project of Higher Educational Science and Technology Program of Shandong Province, China (2022KJ271) Radiative leptonic decay of heavy quarkonia* * Supported by the National Natural Science Foundation of China (12247119, 12042507) Inner fission barriers of uranium isotopes in the deformed relativistic Hartree-Bogoliubov theory in continuum* * This work was partly supported by the Natural Science Foundation of Henan Province, China (242300421156, 202300410480), the National Natural Science Foundation of China (12141501, U2032141, 11935003), the State Key Laboratory of Nuclear Physics and Technology, Peking University (NPT2023ZX03), the Super Computing Center of Beijing Normal University, and High-performance Computing Platform of Peking University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1