Absolute emission height determination of the radio emission components of PSR B2111+46 at multiple bands by relativistic phase shift method

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astrophysics and Space Science Pub Date : 2024-08-28 DOI:10.1007/s10509-024-04353-z
Tridib Roy, Mayuresh Surnis, Ramkrishna Das
{"title":"Absolute emission height determination of the radio emission components of PSR B2111+46 at multiple bands by relativistic phase shift method","authors":"Tridib Roy,&nbsp;Mayuresh Surnis,&nbsp;Ramkrishna Das","doi":"10.1007/s10509-024-04353-z","DOIUrl":null,"url":null,"abstract":"<div><p>Pulsars are believed to be one of the most important celestial objects in the universe. The emission mechanism of pulsars is still a big paradox for physicists, as no completely acceptable theory can reach a suitable consensus with observation. Some complicated coherent plasma processes and acceleration-based mechanisms in the pulsar magnetosphere generate a powerful radio beam. There have been dedicated theories such as the geometrical and relativistic phase shift (RPS) methods. The relativistic phase shift method is owing to the combined effects of aberration-retardation (A/R) and polar cap current effect (PCC), etc., and by implementing this method, we make quantitative inspections to deduce the emission altitude of the pulsar’s radio emission components. Here, we have shown the estimation of the emission height of pulsar PSR B2111+46 for both core and conal components at 925 MHz, 1.25 GHz, 1.65 GHz, and 4.85 GHz. Moreover, we have estimated the foot point, normalized with the last open field line constant, corresponding to pulse edges at multiple bands. Current analysis of the paper shows that at least for PSR B2111+46, the full polar cap is not sensitive to radio emission for most of the cases in the given stretch of radio frequency.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04353-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pulsars are believed to be one of the most important celestial objects in the universe. The emission mechanism of pulsars is still a big paradox for physicists, as no completely acceptable theory can reach a suitable consensus with observation. Some complicated coherent plasma processes and acceleration-based mechanisms in the pulsar magnetosphere generate a powerful radio beam. There have been dedicated theories such as the geometrical and relativistic phase shift (RPS) methods. The relativistic phase shift method is owing to the combined effects of aberration-retardation (A/R) and polar cap current effect (PCC), etc., and by implementing this method, we make quantitative inspections to deduce the emission altitude of the pulsar’s radio emission components. Here, we have shown the estimation of the emission height of pulsar PSR B2111+46 for both core and conal components at 925 MHz, 1.25 GHz, 1.65 GHz, and 4.85 GHz. Moreover, we have estimated the foot point, normalized with the last open field line constant, corresponding to pulse edges at multiple bands. Current analysis of the paper shows that at least for PSR B2111+46, the full polar cap is not sensitive to radio emission for most of the cases in the given stretch of radio frequency.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用相对论相移法测定多波段 PSR B2111+46 射电发射成分的绝对发射高度
脉冲星被认为是宇宙中最重要的天体之一。脉冲星的发射机制对物理学家来说仍然是一个巨大的悖论,因为没有一种完全可以接受的理论能够与观测结果达成适当的共识。脉冲星磁层中一些复杂的相干等离子体过程和加速机制产生了强大的射电波束。目前已有专门的理论,如几何相移法和相对论相移法(RPS)。相对论相移法是由于像差-衰减(A/R)和极帽电流效应(PCC)等综合效应而产生的,通过实施这种方法,我们可以对脉冲星射电发射成分的发射高度进行定量检测推导。在这里,我们展示了脉冲星 PSR B2111+46 在 925 MHz、1.25 GHz、1.65 GHz 和 4.85 GHz 上的核心和锥体成分的发射高度估算。此外,我们还估算了在多个波段与脉冲边缘相对应的脚点,并以最后一个开放场线常数进行归一化。本文目前的分析表明,至少对于 PSR B2111+46 来说,在给定的射电频率范围内的大多数情况下,全极帽对射电发射并不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
期刊最新文献
Images in axially symmetric gravitational lenses from elliptical sources: the elimination method Following the tidal trail: a history of modeling the Magellanic Stream Investigation of non-substorm Pi2 magnetic pulsation during solar flare event Resolved stellar populations as a key to unlocking the formation and evolution of galaxies A real-time solar flare forecasting system with deep learning methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1