A catalytic amplification platform based on Fe2O3 nanoparticles decorated graphene nanocomposites for highly sensitive detection of rutin†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Advances Pub Date : 2024-09-11 DOI:10.1039/D4NA00583J
Zhuzhen Chen, Tingting Zhang, Xue Zhang, Wangxing Cheng, Linwei Chen and Nannan Lu
{"title":"A catalytic amplification platform based on Fe2O3 nanoparticles decorated graphene nanocomposites for highly sensitive detection of rutin†","authors":"Zhuzhen Chen, Tingting Zhang, Xue Zhang, Wangxing Cheng, Linwei Chen and Nannan Lu","doi":"10.1039/D4NA00583J","DOIUrl":null,"url":null,"abstract":"<p >Exploration of nanocomposites with exceptional catalytic activities is essential for harnessing the unique advantages of each constituent in the domains of pharmaceutical analysis and electrochemical sensing. In this regard, we illustrated the synthesis of iron oxide/N-doped reduced graphene oxide (Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/N-rGO) nanocomposites through a one-step thermal treatment of iron phthalocyanine (FePc), melamine, and graphene oxide for electrochemical sensing. The large specific surface area and good conductivity of N-rGO can efficiently capture rutin molecules and accelerate electron transport, thereby improving the electrochemical performance. Moreover, the Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> nanoparticles with distinct electronic characteristics significantly enhanced the detection sensitivity of the constructed electrochemical platform. Because of the outstanding electrical conductivity, an extensive surface area, and synergistic catalysis, Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/N-rGO was employed as an advanced electrode modifier to build an electrochemical sensing platform for rutin detection. Significantly, the manufactured sensor showed a broad detection range from 7 nM to 150 μM and a high sensitivity of 5632 μA mM<small><sup>−1</sup></small>. Furthermore, the fabricated sensor showed desirable results in terms of stability, selectivity, and practical application. This work presents a facile method to prepare Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/N-rGO and supplies a valuable example for building metal oxide/graphene nanocomposites for electrochemical analysis.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00583j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00583j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exploration of nanocomposites with exceptional catalytic activities is essential for harnessing the unique advantages of each constituent in the domains of pharmaceutical analysis and electrochemical sensing. In this regard, we illustrated the synthesis of iron oxide/N-doped reduced graphene oxide (Fe2O3/N-rGO) nanocomposites through a one-step thermal treatment of iron phthalocyanine (FePc), melamine, and graphene oxide for electrochemical sensing. The large specific surface area and good conductivity of N-rGO can efficiently capture rutin molecules and accelerate electron transport, thereby improving the electrochemical performance. Moreover, the Fe2O3 nanoparticles with distinct electronic characteristics significantly enhanced the detection sensitivity of the constructed electrochemical platform. Because of the outstanding electrical conductivity, an extensive surface area, and synergistic catalysis, Fe2O3/N-rGO was employed as an advanced electrode modifier to build an electrochemical sensing platform for rutin detection. Significantly, the manufactured sensor showed a broad detection range from 7 nM to 150 μM and a high sensitivity of 5632 μA mM−1. Furthermore, the fabricated sensor showed desirable results in terms of stability, selectivity, and practical application. This work presents a facile method to prepare Fe2O3/N-rGO and supplies a valuable example for building metal oxide/graphene nanocomposites for electrochemical analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Fe2O3 纳米粒子装饰的石墨烯纳米复合材料的催化放大平台,用于高灵敏度检测芦丁
探索具有特殊催化活性的纳米复合材料对于在药物分析和电化学传感领域利用每种成分的独特优势至关重要。为此,我们通过一步热处理酞菁铁(FePc)、三聚氰胺和氧化石墨烯,合成了氧化铁/掺杂还原氧化石墨烯(Fe2O3/N-rGO)纳米复合材料,用于电化学传感。N-rGO 具有较大的比表面积和良好的导电性,能有效捕获芦丁分子并加速电子传输,从而改善电化学性能。此外,具有独特电子特性的 Fe2O3 纳米粒子显著提高了所构建电化学平台的检测灵敏度。Fe2O3/N-rGO 具有优异的导电性、广阔的比表面积和协同催化作用,因此被用作一种先进的电极改性剂来构建芦丁检测电化学传感平台。值得注意的是,所制备的传感器具有从 7 nM 到 150 μM 的宽检测范围和 5632 μA mM-1 的高灵敏度。此外,所制备的传感器在稳定性、选择性和实际应用方面都取得了令人满意的结果。这项研究提出了一种制备 Fe2O3/N-rGO 的简便方法,为构建用于电化学分析的金属氧化物/石墨烯纳米复合材料提供了一个有价值的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
期刊最新文献
Back cover A rapid one-step synthesis of silver and copper coordinated chlorine functionalized fullerene nanoparticles with enhanced antibacterial activity. A comprehensive review of challenges and advances in exosome-based drug delivery systems. Supramolecular chirality in self-organised systems and thin films Injectable pH-responsive polypeptide hydrogels for local delivery of doxorubicin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1