General hydrodynamic approach for a cold Bose gas

V. M. Pergamenshchik
{"title":"General hydrodynamic approach for a cold Bose gas","authors":"V. M. Pergamenshchik","doi":"arxiv-2408.12363","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to derive the hydrodynamics for a cold Bose gas from\nthe microscopic platform based on the many-body Schrodinger equation and\ngeneral assumptions of the hydrodynamic approach (HA) applicable to any\ndimension. We develop a general HA for a cold spatially inhomogeneous Bose gas\nassuming two different temporal and spatial scales and obtain the energy as a\nfunctional of both fast inner quantum mode and slow macroscopic mode. The\nequations governing the fast and slow modes are obtained from this functional\nby their independent variations. The fast mode is the wave function in the\nstationary state at local density which can be ground, excited with a nonzero\natom momenta, or a superposition of more than one states. The energy eigenvalue\n(or expectation value) of this local wave function universally enters the\nhydrodynamic equation for the slow mode in the form of the local chemical\npotential which incorporates the inner local momentum. For zero inner momenta\nand particular choices of this eigenvalue as a function of gas density, this\nequation reduces to the known equations based on the local density\napproximation. If however the inner momenta are nonzero, the equation includes\nthe interaction between these momenta and the slow mode velocity. Relation\nbetween this general HA and the standard local density approximation is\nelaborated. Two effects of the local momenta and their density dependence on\nthe soliton solutions are demonstrated.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to derive the hydrodynamics for a cold Bose gas from the microscopic platform based on the many-body Schrodinger equation and general assumptions of the hydrodynamic approach (HA) applicable to any dimension. We develop a general HA for a cold spatially inhomogeneous Bose gas assuming two different temporal and spatial scales and obtain the energy as a functional of both fast inner quantum mode and slow macroscopic mode. The equations governing the fast and slow modes are obtained from this functional by their independent variations. The fast mode is the wave function in the stationary state at local density which can be ground, excited with a nonzero atom momenta, or a superposition of more than one states. The energy eigenvalue (or expectation value) of this local wave function universally enters the hydrodynamic equation for the slow mode in the form of the local chemical potential which incorporates the inner local momentum. For zero inner momenta and particular choices of this eigenvalue as a function of gas density, this equation reduces to the known equations based on the local density approximation. If however the inner momenta are nonzero, the equation includes the interaction between these momenta and the slow mode velocity. Relation between this general HA and the standard local density approximation is elaborated. Two effects of the local momenta and their density dependence on the soliton solutions are demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷玻色气体的一般流体力学方法
本文的目的是基于多体薛定谔方程和适用于任何维度的流体力学方法(HA)的一般假设,从微观平台上推导出冷玻色气体的流体力学。我们为冷的空间不均匀玻色气体建立了一个假定有两种不同时空尺度的一般流体力学方法,并获得了能量作为快速内量子模式和慢速宏观模式的函数。根据该函数的独立变化,可以得到管理快速和慢速模式的方程。快模是局部密度下稳态的波函数,它可以是接地态、非零原子矩激发态或多个态的叠加态。这种局部波函数的能量特征值(或期望值)通常以局部化学势的形式进入慢模的流体力学方程,其中包含了内部局部动量。对于零内动量和该特征值作为气体密度函数的特定选择,该方程可还原为基于局部密度近似的已知方程。然而,如果内矩不为零,方程就包含了这些内矩与慢模速度之间的相互作用。本文阐述了这一一般 HA 与标准局部密度近似之间的关系。演示了局部矩及其密度依赖性对孤子解的两种影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boundary-localized many-body bound states in the continuum Correlations of the Current Density in Many-Body Landau Level States Measurement resolution enhanced coherence for lattice fermions Finite temperature stability of quantized vortex structures in rotating Bose-Einstein condensates via complex Langevin simulation Josephson effect and self-trapping in helicoidal spin-orbit coupled Bose-Einstein condensates with optical lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1