Julia Schoenfeld, Steffen Brunst, Ludmila Ciomirtan, Nick Liebisch, Adarsh Kumar, Johanna Ehrler, Lukas Wintermeier, Jan Heering, Astrid Brueggerhof, Lilia Weizel, Astrid Kahnt, Manfred Schubert-Zsilavecz, Stefan Knapp, Robert Fuerst, Eugen Proschak, Kerstin Hiesinger
{"title":"STRUCTURE-BASED DESIGN OF PROTACS FOR THE DEGRADATION OF SOLUBLE EPOXIDE HYDROLASE","authors":"Julia Schoenfeld, Steffen Brunst, Ludmila Ciomirtan, Nick Liebisch, Adarsh Kumar, Johanna Ehrler, Lukas Wintermeier, Jan Heering, Astrid Brueggerhof, Lilia Weizel, Astrid Kahnt, Manfred Schubert-Zsilavecz, Stefan Knapp, Robert Fuerst, Eugen Proschak, Kerstin Hiesinger","doi":"10.1101/2024.09.05.611393","DOIUrl":null,"url":null,"abstract":"Soluble epoxide hydrolase (sEH) represents a promising target for inflammation-related diseases as it hydrolyzes highly anti-inflammatory epoxy-fatty acids (EpFAs) to the less active corresponding diols.1 sEH harbours two distinct catalytic domains, the C-terminal hydrolase domain and the N-terminal phosphatase domain which are connected by a proline-rich linker. Although potent inhibitors of enzymatic activity are available for both domains, sEH-PROTACs offer the unique ability to simultaneously degrade both domains, mimicking the sEH knockout phenotype associated with beneficial effects as reducing inflammation, attenuating neuroinflammation, and delaying the progression of Alzheimer's disease. Herein, we report the structure-based development of a potent sEH-PROTAC as a useful tool compound for the investigation of sEH. In order to facilitate a rapid testing of the synthesized compounds a cell-based sEH degradation assay was developed based on the HiBiT-technology. A structure-activity-relationship (SAR) investigation was performed, based on the crystal structure of previously published sEH inhibitor FL217 where we identified two possible exit vectors. We designed and synthesized a set of 24 PROTACs with varying linkers in a combinatorial manner. Furthermore, co-crystallization of sEH with two selected PROTACs allowed us to explore the binding mode and rationalize the appropriate linker length. After biological and physicochemical investigation, the most suitable PROTAC 23 was identified and applied to degrade sEH in primary human macrophages, marking the successful translation and applicability to non-artificial systems.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Soluble epoxide hydrolase (sEH) represents a promising target for inflammation-related diseases as it hydrolyzes highly anti-inflammatory epoxy-fatty acids (EpFAs) to the less active corresponding diols.1 sEH harbours two distinct catalytic domains, the C-terminal hydrolase domain and the N-terminal phosphatase domain which are connected by a proline-rich linker. Although potent inhibitors of enzymatic activity are available for both domains, sEH-PROTACs offer the unique ability to simultaneously degrade both domains, mimicking the sEH knockout phenotype associated with beneficial effects as reducing inflammation, attenuating neuroinflammation, and delaying the progression of Alzheimer's disease. Herein, we report the structure-based development of a potent sEH-PROTAC as a useful tool compound for the investigation of sEH. In order to facilitate a rapid testing of the synthesized compounds a cell-based sEH degradation assay was developed based on the HiBiT-technology. A structure-activity-relationship (SAR) investigation was performed, based on the crystal structure of previously published sEH inhibitor FL217 where we identified two possible exit vectors. We designed and synthesized a set of 24 PROTACs with varying linkers in a combinatorial manner. Furthermore, co-crystallization of sEH with two selected PROTACs allowed us to explore the binding mode and rationalize the appropriate linker length. After biological and physicochemical investigation, the most suitable PROTAC 23 was identified and applied to degrade sEH in primary human macrophages, marking the successful translation and applicability to non-artificial systems.