Anna Pagotto, Federico Uliana, Giulia Nordio, Andrea Pietrangelini, Laura Acquasaliente, Maria Ludovica Macchia, Massimo Bellanda, Barbara Gatto, Giustina De Silvestro, Piero Marson, Paolo Simioni, Paola Picotti, Vincenzo De Filippis
{"title":"The Main protease (Mpro) from SARS-CoV-2 triggers plasma clotting in vitro by activating coagulation factors VII and FXII","authors":"Anna Pagotto, Federico Uliana, Giulia Nordio, Andrea Pietrangelini, Laura Acquasaliente, Maria Ludovica Macchia, Massimo Bellanda, Barbara Gatto, Giustina De Silvestro, Piero Marson, Paolo Simioni, Paola Picotti, Vincenzo De Filippis","doi":"10.1101/2024.09.05.611400","DOIUrl":null,"url":null,"abstract":"Although the connection between COVID-19 and coagulopathy has been clear since the early days of SARS-CoV-2 pandemic, the underlying molecular mechanisms remain unclear. Available data support that the burst of cytokines and bradykinin, observed in some COVID-19 patients, sustains systemic inflammation and the hypercoagulant state, thus increasing thrombotic risk. Here we show that the SARS-CoV-2 main protease (Mpro) can play a direct role in the activation of the coagulation cascade. Adding Mpro to human plasma from healthy donors increased clotting probability by 2.5-fold. The results of enzymatic assays and degradomics analysis indicate that Mpro triggers plasma clotting by proteolytically activating coagulation factors zymogens VII and XII at their physiological activation sites, i.e. Arg152-Ile153 bond for FVII and Arg353-Val354 bond for FXII, where FVII and FXII are strategically positioned at the very beginning of the extrinsic or intrinsic pathways of blood coagulation. These findings are not compatible with the substrate specificity of the protease known so far, displaying a prevalence for a Gln-residue in P1 and a hydrophobic amino acid in P2 position. This apparent discrepancy was resolved by High Throughput Protease Screen assay, unveiling an extended, time-dependent, secondary specificity of Mpro for Arg-X bonds, which was further confirmed by Hydrogen-Deuterium Exchange Mass spectrometry analysis of Arg-containing inhibitors binding to Mpro and by enzymatic assays showing that the protease can cleave peptide substrates containing Arg in P1. Overall, integrating biochemical, proteomics and structural biology experiments, we unveil a novel mechanism linking SARS-CoV-2 infection to thrombotic complications in COVID-19.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although the connection between COVID-19 and coagulopathy has been clear since the early days of SARS-CoV-2 pandemic, the underlying molecular mechanisms remain unclear. Available data support that the burst of cytokines and bradykinin, observed in some COVID-19 patients, sustains systemic inflammation and the hypercoagulant state, thus increasing thrombotic risk. Here we show that the SARS-CoV-2 main protease (Mpro) can play a direct role in the activation of the coagulation cascade. Adding Mpro to human plasma from healthy donors increased clotting probability by 2.5-fold. The results of enzymatic assays and degradomics analysis indicate that Mpro triggers plasma clotting by proteolytically activating coagulation factors zymogens VII and XII at their physiological activation sites, i.e. Arg152-Ile153 bond for FVII and Arg353-Val354 bond for FXII, where FVII and FXII are strategically positioned at the very beginning of the extrinsic or intrinsic pathways of blood coagulation. These findings are not compatible with the substrate specificity of the protease known so far, displaying a prevalence for a Gln-residue in P1 and a hydrophobic amino acid in P2 position. This apparent discrepancy was resolved by High Throughput Protease Screen assay, unveiling an extended, time-dependent, secondary specificity of Mpro for Arg-X bonds, which was further confirmed by Hydrogen-Deuterium Exchange Mass spectrometry analysis of Arg-containing inhibitors binding to Mpro and by enzymatic assays showing that the protease can cleave peptide substrates containing Arg in P1. Overall, integrating biochemical, proteomics and structural biology experiments, we unveil a novel mechanism linking SARS-CoV-2 infection to thrombotic complications in COVID-19.