Qiang Gao, Lingchun Ye, Wei Liu, Junxi Li, Yuchen Cui, Naicai Xu and Mingjin Zhang
{"title":"Design of 2D/2D ZnIn2S4/MgAl-LDH core–shell nanostructures toward enhanced photodegradation of organic dyes†","authors":"Qiang Gao, Lingchun Ye, Wei Liu, Junxi Li, Yuchen Cui, Naicai Xu and Mingjin Zhang","doi":"10.1039/D4EW00340C","DOIUrl":null,"url":null,"abstract":"<p >The rational design of semiconductor photocatalysts with multi-dimensional nanostructures is an effective way to solve the problem of water environmental pollution. Herein, a series of ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small>/MgAl-LDH (ZIS/LDH) composites with core–shell nanostructures were synthesized by <em>in situ</em> growth of 2D ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> nanosheets on hexagonal LDH sheets. The obtained ZIS/LDH composite exhibited enhanced photocatalytic performance with 100% degradation efficiency for methyl orange (MO) within 20 min illumination, which was mainly attributed to the heterostructure formed by the excellent interface contact of the nanostructures, thereby inhibiting the recombination of photogenerated charges. Additionally, the as-synthesized photocatalyst shows satisfactory photocatalytic activity in stability tests and removal experiments for various dye pollutants. The present work provides novel insight into the design of heterojunction photocatalysts with multidimensional nanostructures and environmentally friendly applications.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 10","pages":" 2589-2596"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00340c","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rational design of semiconductor photocatalysts with multi-dimensional nanostructures is an effective way to solve the problem of water environmental pollution. Herein, a series of ZnIn2S4/MgAl-LDH (ZIS/LDH) composites with core–shell nanostructures were synthesized by in situ growth of 2D ZnIn2S4 nanosheets on hexagonal LDH sheets. The obtained ZIS/LDH composite exhibited enhanced photocatalytic performance with 100% degradation efficiency for methyl orange (MO) within 20 min illumination, which was mainly attributed to the heterostructure formed by the excellent interface contact of the nanostructures, thereby inhibiting the recombination of photogenerated charges. Additionally, the as-synthesized photocatalyst shows satisfactory photocatalytic activity in stability tests and removal experiments for various dye pollutants. The present work provides novel insight into the design of heterojunction photocatalysts with multidimensional nanostructures and environmentally friendly applications.
期刊介绍:
Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.