Anara Babayeva, Esra Dibek, İbrahim Kıvrak, Bekir Çöl
{"title":"The Cytotoxic Effects of Turkish Bee Venom (Apis mellifera) on Selected Cancer Cell Lines","authors":"Anara Babayeva, Esra Dibek, İbrahim Kıvrak, Bekir Çöl","doi":"10.1007/s10989-024-10631-9","DOIUrl":null,"url":null,"abstract":"<p>The prevalence of cancer is so high globally that it is imperative to identify effective treatments. The use of bee products in the field of cancer therapeutics has gained significant attention as a promising alternative. Female worker bees (<i>Apis mellifera</i>) produce bee venom, which contains a complex array of biologically active compounds, including enzymes and peptides. Bee venom exhibits a range of biological activities with potential human health benefits, which vary across bee species and geographic locations. The objective of this study was to investigate the cytotoxicity of Turkish bee venom for the first time on some of the selected cancer cell lines. Bee venom was collected and resuspended in water and ethanol. The study analyzed both forms of Turkish bee venom for major peptides and proteins using HPLC-VWD and SDS-PAGE. The major components identified were apamin, melittin, phospholipase A2, and hyaluronidase. Cytotoxic activities were evaluated on eight distinct cell lines (seven cancerous cells and one control) using MTT assays. The Turkish bee venom demonstrated cytotoxicity with 48-hour IC50 values of 14.8 ± 0.6, 5.7 ± 0.2, 8.1 ± 0.1, 7.1 ± 0.1, 8.5 ± 0.2, 7.2 ± 0.1, 7.9 ± 0.1, and 8.0 ± 0.1 µg/mL for Phoenix-AMPHO (CRL-3213), PC-3, Huh-7, Caco-2, HT-29, SW-48, CARM-L12 TG3, and A-673, respectively. The 72-hour IC50 values were 8.2 ± 0.2, 4.5 ± 0.3, 7.1 ± 0.1, 6.4 ± 0.1, 6.0 ± 0.3, 7.2 ± 0.1, 2.1 ± 0.1, and 6.0 ± 0.2 µg/mL, respectively. In conclusion, the study demonstrated that both forms of Turkish bee venom exhibited significant cytotoxic effects on the analyzed cancer cells. The cell lines CARM-L12 TG3, PC-3, and A-673 exhibited the most pronounced responses to the bee venom.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10989-024-10631-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of cancer is so high globally that it is imperative to identify effective treatments. The use of bee products in the field of cancer therapeutics has gained significant attention as a promising alternative. Female worker bees (Apis mellifera) produce bee venom, which contains a complex array of biologically active compounds, including enzymes and peptides. Bee venom exhibits a range of biological activities with potential human health benefits, which vary across bee species and geographic locations. The objective of this study was to investigate the cytotoxicity of Turkish bee venom for the first time on some of the selected cancer cell lines. Bee venom was collected and resuspended in water and ethanol. The study analyzed both forms of Turkish bee venom for major peptides and proteins using HPLC-VWD and SDS-PAGE. The major components identified were apamin, melittin, phospholipase A2, and hyaluronidase. Cytotoxic activities were evaluated on eight distinct cell lines (seven cancerous cells and one control) using MTT assays. The Turkish bee venom demonstrated cytotoxicity with 48-hour IC50 values of 14.8 ± 0.6, 5.7 ± 0.2, 8.1 ± 0.1, 7.1 ± 0.1, 8.5 ± 0.2, 7.2 ± 0.1, 7.9 ± 0.1, and 8.0 ± 0.1 µg/mL for Phoenix-AMPHO (CRL-3213), PC-3, Huh-7, Caco-2, HT-29, SW-48, CARM-L12 TG3, and A-673, respectively. The 72-hour IC50 values were 8.2 ± 0.2, 4.5 ± 0.3, 7.1 ± 0.1, 6.4 ± 0.1, 6.0 ± 0.3, 7.2 ± 0.1, 2.1 ± 0.1, and 6.0 ± 0.2 µg/mL, respectively. In conclusion, the study demonstrated that both forms of Turkish bee venom exhibited significant cytotoxic effects on the analyzed cancer cells. The cell lines CARM-L12 TG3, PC-3, and A-673 exhibited the most pronounced responses to the bee venom.