{"title":"Insect Mitochondrial Genomics: A Decade of Progress","authors":"Stephen L. Cameron","doi":"10.1146/annurev-ento-013024-015553","DOIUrl":null,"url":null,"abstract":"The past decade has seen the availability of insect genomic data explode, with mitochondrial (mt) genome data seeing the greatest growth. The widespread adoption of next-generation sequencing has solved many earlier methodological limitations, allowing the routine sequencing of whole mt genomes, including from degraded or museum specimens and in parallel to nuclear genomic projects. The diversity of available taxa now allows finer-scale comparisons between mt and nuclear phylogenomic analyses; high levels of congruence have been found for most orders, with some significant exceptions (e.g., Odonata, Mantodea, Diptera). The evolution of mt gene rearrangements and their association with haplodiploidy have been tested with expanded taxonomic sampling, and earlier proposed trends have been largely supported. Multiple model systems have been developed based on findings unique to insects, including mt genome fragmentation (lice and relatives) and control region duplication (thrips), allowing testing of hypothesized evolutionary drivers of these aberrant genomic phenomena. Finally, emerging research topics consider the contributions of mt genomes to insect speciation and habitat adaption, with very broad potential impacts. Integration between insect mt genomic research and other fields within entomology continues to be our field's greatest opportunity and challenge.","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":null,"pages":null},"PeriodicalIF":15.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-ento-013024-015553","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The past decade has seen the availability of insect genomic data explode, with mitochondrial (mt) genome data seeing the greatest growth. The widespread adoption of next-generation sequencing has solved many earlier methodological limitations, allowing the routine sequencing of whole mt genomes, including from degraded or museum specimens and in parallel to nuclear genomic projects. The diversity of available taxa now allows finer-scale comparisons between mt and nuclear phylogenomic analyses; high levels of congruence have been found for most orders, with some significant exceptions (e.g., Odonata, Mantodea, Diptera). The evolution of mt gene rearrangements and their association with haplodiploidy have been tested with expanded taxonomic sampling, and earlier proposed trends have been largely supported. Multiple model systems have been developed based on findings unique to insects, including mt genome fragmentation (lice and relatives) and control region duplication (thrips), allowing testing of hypothesized evolutionary drivers of these aberrant genomic phenomena. Finally, emerging research topics consider the contributions of mt genomes to insect speciation and habitat adaption, with very broad potential impacts. Integration between insect mt genomic research and other fields within entomology continues to be our field's greatest opportunity and challenge.
期刊介绍:
The Annual Review of Entomology, a publication dating back to 1956, offers comprehensive reviews of significant developments in the field of entomology.The scope of coverage spans various areas, including:biochemistry and physiology, morphology and development, behavior and neuroscience, ecology, agricultural entomology and pest management, biological control, forest entomology, acarines and other arthropods, medical and veterinary entomology, pathology, vectors of plant disease, genetics, genomics, and systematics, evolution, and biogeography.