CVT-Track: Concentrating on Valid Tokens for One-Stream Tracking

IF 11.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems for Video Technology Pub Date : 2024-08-30 DOI:10.1109/TCSVT.2024.3452231
Jianan Li;Xiaoying Yuan;Haolin Qin;Ying Wang;Xincong Liu;Tingfa Xu
{"title":"CVT-Track: Concentrating on Valid Tokens for One-Stream Tracking","authors":"Jianan Li;Xiaoying Yuan;Haolin Qin;Ying Wang;Xincong Liu;Tingfa Xu","doi":"10.1109/TCSVT.2024.3452231","DOIUrl":null,"url":null,"abstract":"In the domain of single object tracking, the Ground Truth bounding box is intentionally sized larger than the minimum dimensions required to enclose the target in the initial video frame, inadvertently including extraneous elements and interferences in the template image. Moreover, significant appearance changes of the target during movement present substantial challenges for maintaining robust tracking. To address these issues, this study introduces a novel one-stream tracking framework named CVT-Track. CVT-Track comprises two main components: the Target Valid Token Collection (TaVTC) and the Temporal Valid Token Collection (TeVTC) modules. The TaVTC module effectively mitigates background noise and interference from similar targets, thereby sharpening the focus on the target’s unique features and enhancing tracking accuracy. Conversely, the TeVTC module skillfully extracts target information from historical frames, capturing the target’s dynamic appearance changes throughout the tracking process and thereby improving tracking robustness. The synergistic operation of these modules markedly enhances both the accuracy and robustness of tracking. Empirical evaluations demonstrate that CVT-Track achieves state-of-the-art performance across multiple datasets and maintains superior inference speeds.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 1","pages":"33-44"},"PeriodicalIF":11.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10659749/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the domain of single object tracking, the Ground Truth bounding box is intentionally sized larger than the minimum dimensions required to enclose the target in the initial video frame, inadvertently including extraneous elements and interferences in the template image. Moreover, significant appearance changes of the target during movement present substantial challenges for maintaining robust tracking. To address these issues, this study introduces a novel one-stream tracking framework named CVT-Track. CVT-Track comprises two main components: the Target Valid Token Collection (TaVTC) and the Temporal Valid Token Collection (TeVTC) modules. The TaVTC module effectively mitigates background noise and interference from similar targets, thereby sharpening the focus on the target’s unique features and enhancing tracking accuracy. Conversely, the TeVTC module skillfully extracts target information from historical frames, capturing the target’s dynamic appearance changes throughout the tracking process and thereby improving tracking robustness. The synergistic operation of these modules markedly enhances both the accuracy and robustness of tracking. Empirical evaluations demonstrate that CVT-Track achieves state-of-the-art performance across multiple datasets and maintains superior inference speeds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CVT-Track:集中使用有效令牌进行单流跟踪
在单目标跟踪领域,Ground Truth边界框的尺寸故意大于初始视频帧中包围目标所需的最小尺寸,无意中包括模板图像中的无关元素和干扰。此外,目标在运动过程中显著的外观变化对保持鲁棒跟踪提出了实质性的挑战。为了解决这些问题,本研究引入了一种新的单流跟踪框架CVT-Track。CVT-Track包括两个主要组件:目标有效令牌收集(TaVTC)和临时有效令牌收集(TeVTC)模块。TaVTC模块有效地减轻了背景噪声和来自相似目标的干扰,从而使对目标独特特征的关注更加清晰,提高了跟踪精度。相反,TeVTC模块巧妙地从历史帧中提取目标信息,捕捉目标在整个跟踪过程中的动态外观变化,从而提高跟踪的鲁棒性。这些模块的协同工作显著提高了跟踪的精度和鲁棒性。经验评估表明,CVT-Track在多个数据集上实现了最先进的性能,并保持了卓越的推理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.80
自引率
27.40%
发文量
660
审稿时长
5 months
期刊介绍: The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.
期刊最新文献
IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information 2025 Index IEEE Transactions on Circuits and Systems for Video Technology IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1