{"title":"Relaxation and entropy generation in dewetting thin glassy polymer films trapped far from equilibrium","authors":"Mithun Madhusudanan, Mithun Chowdhury","doi":"10.1002/pol.20240510","DOIUrl":null,"url":null,"abstract":"<p>Polymers when confined to a dimension comparable to the length scale of polymer chain coils such as thin films, often lead to molecular relaxation processes distinct from their bulk counterpart. Often observed as thermal and mechanical responses such relaxation has been frequently associated with the squeezing of polymer chains having conformations trapped far from thermodynamic equilibrium and subsequently generating processing-induced molecular recoiling stress. Relaxation in polymer films can be modified by tuning the molecular recoiling stress, which is directly influenced by the preparation conditions of the polymer thin films. Hence a comprehensive understanding of the genesis and relaxation of molecular recoiling stress becomes necessary. Here, we provide insights into the nonequilibrium nature observed in polymer thin films, focusing majorly on the investigations into the molecular recoiling stress using the dewetting technique. The impact of various factors like temperature of dewetting, thickness of films, molecular weight of polymers, and physical aging affecting the relaxation of molecular recoiling stress is discussed. In addition, discussions on the possible mechanisms of relaxation and modification of molecular recoiling stress by varying the spin-coating speed and addition of plasticizers are also provided. An alternate approach which gives a new perspective into the relaxation of molecular recoiling stress considering the entropy generated during the dewetting of polymer films is also included. The present work is expected to give the reader a comprehensive understanding of the characteristics of molecular recoiling stress relaxation occurring in polymer thin films.</p>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"62 22","pages":"5052-5076"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20240510","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240510","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polymers when confined to a dimension comparable to the length scale of polymer chain coils such as thin films, often lead to molecular relaxation processes distinct from their bulk counterpart. Often observed as thermal and mechanical responses such relaxation has been frequently associated with the squeezing of polymer chains having conformations trapped far from thermodynamic equilibrium and subsequently generating processing-induced molecular recoiling stress. Relaxation in polymer films can be modified by tuning the molecular recoiling stress, which is directly influenced by the preparation conditions of the polymer thin films. Hence a comprehensive understanding of the genesis and relaxation of molecular recoiling stress becomes necessary. Here, we provide insights into the nonequilibrium nature observed in polymer thin films, focusing majorly on the investigations into the molecular recoiling stress using the dewetting technique. The impact of various factors like temperature of dewetting, thickness of films, molecular weight of polymers, and physical aging affecting the relaxation of molecular recoiling stress is discussed. In addition, discussions on the possible mechanisms of relaxation and modification of molecular recoiling stress by varying the spin-coating speed and addition of plasticizers are also provided. An alternate approach which gives a new perspective into the relaxation of molecular recoiling stress considering the entropy generated during the dewetting of polymer films is also included. The present work is expected to give the reader a comprehensive understanding of the characteristics of molecular recoiling stress relaxation occurring in polymer thin films.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.