{"title":"Twenty-three new Heartbeat Star systems discovered based on TESS data","authors":"Min-Yu Li, Sheng-Bang Qian, Ai-Ying Zhou, Li-Ying Zhu, Wen-Ping Liao, Er-Gang Zhao, Xiang-Dong Shi, Fu-Xing Li, Qi-Bin Sun","doi":"10.1093/mnras/stae2057","DOIUrl":null,"url":null,"abstract":"Heartbeat stars (HBSs) are ideal astrophysical laboratories to study the formation and evolution of binary stars in eccentric orbits and the internal structural changes of their components under strong tidal action. We discover 23 new HBSs based on TESS photometric data. The orbital parameters, including orbital period, eccentricity, orbital inclination, argument of periastron, and epoch of periastron passage of these HBSs are derived by using a corrected version of Kumar et al. model based on the Markov Chain Monte Carlo (MCMC) method. The preliminary results show that these HBSs have orbital periods in the range from 2.7 to 20 days and eccentricities in the range from 0.08 to 0.70. The eccentricity-period relation of these objects shows a positive correlation between eccentricity and period, and also shows the existence of orbital circularization. The Hertzsprung-Russell diagram shows that the HBSs are not all located in a particular area. The distribution of the derived parameters suggests a selection bias within the TESS survey towards HBSs with shorter periods. These objects are a very useful source to study the structure and evolution of eccentricity orbit binaries and to extend the TESS HBS catalog.","PeriodicalId":18930,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"79 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/mnras/stae2057","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Heartbeat stars (HBSs) are ideal astrophysical laboratories to study the formation and evolution of binary stars in eccentric orbits and the internal structural changes of their components under strong tidal action. We discover 23 new HBSs based on TESS photometric data. The orbital parameters, including orbital period, eccentricity, orbital inclination, argument of periastron, and epoch of periastron passage of these HBSs are derived by using a corrected version of Kumar et al. model based on the Markov Chain Monte Carlo (MCMC) method. The preliminary results show that these HBSs have orbital periods in the range from 2.7 to 20 days and eccentricities in the range from 0.08 to 0.70. The eccentricity-period relation of these objects shows a positive correlation between eccentricity and period, and also shows the existence of orbital circularization. The Hertzsprung-Russell diagram shows that the HBSs are not all located in a particular area. The distribution of the derived parameters suggests a selection bias within the TESS survey towards HBSs with shorter periods. These objects are a very useful source to study the structure and evolution of eccentricity orbit binaries and to extend the TESS HBS catalog.
期刊介绍:
Monthly Notices of the Royal Astronomical Society is one of the world''s leading primary research journals in astronomy and astrophysics, as well as one of the longest established. It publishes the results of original research in positional and dynamical astronomy, astrophysics, radio astronomy, cosmology, space research and the design of astronomical instruments.