A Hybrid Polarization Image Demosaicking Algorithm Based on Inter-Channel Correlation

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Computational Imaging Pub Date : 2024-08-15 DOI:10.1109/TCI.2024.3443728
Yang Lu;Jiandong Tian;Yiming Su;Yidong Luo;Junchao Zhang;Chunhui Hao
{"title":"A Hybrid Polarization Image Demosaicking Algorithm Based on Inter-Channel Correlation","authors":"Yang Lu;Jiandong Tian;Yiming Su;Yidong Luo;Junchao Zhang;Chunhui Hao","doi":"10.1109/TCI.2024.3443728","DOIUrl":null,"url":null,"abstract":"Emerging \n<italic>monochrome and chromatic polarization filter array</i>\n (MPFA and CPFA) cameras require polarization demosaicking to obtain accurate polarization parameters. Polarization cameras sample the polarization intensity at each location of the pixels. A captured raw image must be converted to a full-channel polarization intensity image using the \n<italic>polarization demosaicking method</i>\n (PDM). However, due to sparse sampling between polarization channels, implementing MPFA and CPFA demosaicking has been challenging. This paper proposes a new hybrid polarization demosaicking algorithm that leverages polarization confidence-based refinement to exploit inter-channel polarization correlation. Additionally, we enhance texture correlation to utilize inter-channel texture correlation fully. Our three-stage PDM preserves both the polarization and texture information. We also introduce a metric computation method to handle the \n<inline-formula><tex-math>$\\pi$</tex-math></inline-formula>\n-ambiguity of the \n<italic>angle of line polarization</i>\n (AoLP). This approach mitigates inaccuracies and \n<inline-formula><tex-math>$\\pi$</tex-math></inline-formula>\n-ambiguity in existing methods when describing the quality of AoLP reconstruction. We extensively compare and conduct ablation experiments on synthetic datasets from MPFA and CPFA. Our method achieves competitive results compared to other state-of-the-art methods. Furthermore, we evaluate our proposal on real-world datasets to demonstrate its applicability in real-world, variable scenarios. Two application experiments (road detection and shape from polarization) show that our proposal can be applied to real-world applications.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1400-1413"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10637726/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging monochrome and chromatic polarization filter array (MPFA and CPFA) cameras require polarization demosaicking to obtain accurate polarization parameters. Polarization cameras sample the polarization intensity at each location of the pixels. A captured raw image must be converted to a full-channel polarization intensity image using the polarization demosaicking method (PDM). However, due to sparse sampling between polarization channels, implementing MPFA and CPFA demosaicking has been challenging. This paper proposes a new hybrid polarization demosaicking algorithm that leverages polarization confidence-based refinement to exploit inter-channel polarization correlation. Additionally, we enhance texture correlation to utilize inter-channel texture correlation fully. Our three-stage PDM preserves both the polarization and texture information. We also introduce a metric computation method to handle the $\pi$ -ambiguity of the angle of line polarization (AoLP). This approach mitigates inaccuracies and $\pi$ -ambiguity in existing methods when describing the quality of AoLP reconstruction. We extensively compare and conduct ablation experiments on synthetic datasets from MPFA and CPFA. Our method achieves competitive results compared to other state-of-the-art methods. Furthermore, we evaluate our proposal on real-world datasets to demonstrate its applicability in real-world, variable scenarios. Two application experiments (road detection and shape from polarization) show that our proposal can be applied to real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信道间相关性的混合偏振图像去马赛克算法
新兴的单色偏振滤光片阵列(MPFA 和 CPFA)相机需要进行偏振去马赛克处理,以获得准确的偏振参数。偏振相机对每个像素位置的偏振强度进行采样。必须使用偏振去马赛克方法(PDM)将拍摄到的原始图像转换为全通道偏振强度图像。然而,由于偏振通道之间采样稀疏,实现 MPFA 和 CPFA 去马赛克一直是个挑战。本文提出了一种新的混合偏振去马赛克算法,利用基于偏振置信度的细化来利用通道间的偏振相关性。此外,我们还增强了纹理相关性,以充分利用信道间纹理相关性。我们的三阶段 PDM 同时保留了偏振和纹理信息。我们还引入了一种度量计算方法来处理线偏振角(AoLP)的不确定性。这种方法可以减少现有方法在描述 AoLP 重建质量时的不准确性和模糊性。我们对 MPFA 和 CPFA 的合成数据集进行了广泛的比较和消融实验。与其他最先进的方法相比,我们的方法取得了具有竞争力的结果。此外,我们还在现实世界的数据集上评估了我们的建议,以证明其在现实世界多变场景中的适用性。两个应用实验(道路检测和偏振形状检测)表明,我们的建议可以应用于现实世界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
期刊最新文献
IEEE Signal Processing Society Information List of Reviewers Ice-Tide: Implicit Cryo-ET Imaging and Deformation Estimation Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction FgC2F-UDiff: Frequency-Guided and Coarse-to-Fine Unified Diffusion Model for Multi-Modality Missing MRI Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1