Localization of macroscopic sources of magnetic field using optical fibers doped with NV-rich sub-micron diamonds and zero-field resonance

Mariusz Mrózek, Adam Filipkowski, Wojciech Gawlik, Ryszard Buczyński, Adam M. Wojciechowski, Mariusz Klimczak
{"title":"Localization of macroscopic sources of magnetic field using optical fibers doped with NV-rich sub-micron diamonds and zero-field resonance","authors":"Mariusz Mrózek, Adam Filipkowski, Wojciech Gawlik, Ryszard Buczyński, Adam M. Wojciechowski, Mariusz Klimczak","doi":"arxiv-2409.05452","DOIUrl":null,"url":null,"abstract":"We employ an optical fiber doped with randomly oriented fluorescent\nsub-micron diamonds and the novel zero-field resonance protocol to collect\ninformation on the localization and orientation of a magnetic-field source and\nits distribution. Many previous demonstrations of diamond-based magnetic field\nsensing achieved ultrahigh sensitivities down to the fT range warranted by\nmanipulating spin states of the diamond nitrogen vacancy (NV) centers with\nexternally applied radio or microwaves. The application of such oscillating\nfields is problematic in distributed magnetic-field measurements and may be\nincompatible with specific targets. Instead of relying on these approaches, we\nleveraged cross-relaxations of particular spin-state populations of the NV\ncenter under a magnetic field, thus observing zero-field resonances and making\nexternal radio frequency fields redundant. Combined with an optical fiber\nsensitive to the magnetic field along its entire length, remote sensing was\nrealized that returned information on the spatial field distribution without\nusing any moving mechanical elements in the detection system. Variation of the\nspatial parameters of the investigated field was achieved simply by controlling\nthe current in a pair of induction coils easily integrable with optical fibers\nwithout limiting the fiber-specific functionality of the optical readout taking\nplace at a fixed location at the optical fiber output. Lifting of the\nrequirements related to the mechanical scanning of the fiber, the application\nof external fields, and the orientation of the NV centers against the measured\nfield mark a very practical step forward in optically driven magnetic field\nsensing, not easily achievable with earlier implementations.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We employ an optical fiber doped with randomly oriented fluorescent sub-micron diamonds and the novel zero-field resonance protocol to collect information on the localization and orientation of a magnetic-field source and its distribution. Many previous demonstrations of diamond-based magnetic field sensing achieved ultrahigh sensitivities down to the fT range warranted by manipulating spin states of the diamond nitrogen vacancy (NV) centers with externally applied radio or microwaves. The application of such oscillating fields is problematic in distributed magnetic-field measurements and may be incompatible with specific targets. Instead of relying on these approaches, we leveraged cross-relaxations of particular spin-state populations of the NV center under a magnetic field, thus observing zero-field resonances and making external radio frequency fields redundant. Combined with an optical fiber sensitive to the magnetic field along its entire length, remote sensing was realized that returned information on the spatial field distribution without using any moving mechanical elements in the detection system. Variation of the spatial parameters of the investigated field was achieved simply by controlling the current in a pair of induction coils easily integrable with optical fibers without limiting the fiber-specific functionality of the optical readout taking place at a fixed location at the optical fiber output. Lifting of the requirements related to the mechanical scanning of the fiber, the application of external fields, and the orientation of the NV centers against the measured field mark a very practical step forward in optically driven magnetic field sensing, not easily achievable with earlier implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用掺杂富含 NV 的亚微米钻石的光纤和零场共振定位宏观磁场源
我们采用掺杂了随机定向荧光亚微米级金刚石的光纤和新颖的零场共振协议来收集有关磁场源的定位和定向及其分布的信息。以前的许多基于金刚石的磁场感应演示都通过利用外部施加的无线电或微波操纵金刚石氮空位(NV)中心的自旋态,实现了低至 fT 范围的超高灵敏度。这种振荡场的应用在分布式磁场测量中存在问题,而且可能与特定目标不兼容。我们没有依赖这些方法,而是利用磁场下 NV 中心特定自旋态群的交叉松弛,从而观测到零场共振,使外部射频场成为多余。结合对整个长度上的磁场敏感的光纤,实现了遥感,在探测系统中不使用任何移动机械元件的情况下,就能返回空间磁场分布的信息。只需控制一对感应线圈中的电流,就能实现被测磁场空间参数的变化,而无需限制光纤输出端固定位置的光读出功能。取消了与光纤机械扫描、外部磁场应用和 NV 中心对测量磁场的定向有关的要求,标志着光驱动磁场感应技术向前迈出了非常实用的一步,这在以前的实现方法中是不容易做到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrafast cascade charge transfer in multi bandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission p-(001)NiO/n-(0001)ZnO Heterostructures based Ultraviolet Photodetectors Normal/inverse Doppler effect of backward volume magnetostatic spin waves Unattended field measurement of bird source level Fabrication of Ultra-Thick Masks for X-ray Phase Contrast Imaging at Higher Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1